
                                         DESIGN AND ANALYSIS OF ALGORITHM(RCS4C002) 

MODULE-1 

Introduction  

An algorithm is a set of steps of operations to solve a problem performing calculation, 
data processing, and automated reasoning tasks. An algorithm is an efficient method 
that can be expressed within finite amount of time and space. 

An algorithm is the best way to represent the solution of a particular problem in a very 
simple and efficient way. If we have an algorithm for a specific problem, then we can 
implement it in any programming language, meaning that the algorithm is independent 
from any programming languages. 

. 

Algorithm Design 

The important aspects of algorithm design include creating an efficient algorithm to solve 
a problem in an efficient way using minimum time and space. 

To solve a problem, different approaches can be followed. Some of them can be efficient 
with respect to time consumption, whereas other approaches may be memory efficient. 
However, one has to keep in mind that both time consumption and memory usage cannot 
be optimized simultaneously. If we require an algorithm to run in lesser time, we have to 
invest in more memory and if we require an algorithm to run with lesser memory, we 
need to have more time. 

Characteristics of Algorithms 

The main characteristics of algorithms are as follows − 

• Algorithms must have a unique name 

• Algorithms should have explicitly defined set of inputs and outputs 

• Algorithms are well-ordered with unambiguous operations 

• Algorithms halt in a finite amount of time. Algorithms should not run for infinity, i.e., an 
algorithm must end at some point 

 

The Need for Analysis 

In this chapter, we will discuss the need for analysis of algorithms and how to choose a 
better algorithm for a particular problem as one computational problem can be solved by 
different algorithms. 



By considering an algorithm for a specific problem, we can begin to develop pattern 
recognition so that similar types of problems can be solved by the help of this algorithm. 

Algorithms are often quite different from one another, though the objective of these 
algorithms are the same. For example, we know that a set of numbers can be sorted 
using different algorithms. Number of comparisons performed by one algorithm may vary 
with others for the same input. Hence, time complexity of those algorithms may differ. At 
the same time, we need to calculate the memory space required by each algorithm. 

Analysis of algorithm is the process of analyzing the problem-solving capability of the 
algorithm in terms of the time and size required (the size of memory for storage while 
implementation). However, the main concern of analysis of algorithms is the required 
time or performance. Generally, we perform the following types of analysis − 

• Worst-case − The maximum number of steps taken on any instance of size a. 

• Best-case − The minimum number of steps taken on any instance of size a. 

• Average case − An average number of steps taken on any instance of size a. 

• Amortized − A sequence of operations applied to the input of size a averaged over time. 

To solve a problem, we need to consider time as well as space complexity as the 
program may run on a system where memory is limited but adequate space is available 
or may be vice-versa. In this context, if we compare bubble sort and merge sort. 
Bubble sort does not require additional memory, but merge sort requires additional 
space. Though time complexity of bubble sort is higher compared to merge sort, we may 
need to apply bubble sort if the program needs to run in an environment, where memory 
is very limited. 

To measure resource consumption of an algorithm, different strategies are used as 
discussed in this chapter. 

Asymptotic Analysis 

The asymptotic behavior of a function f(n) refers to the growth of f(n) as n gets large. 

We typically ignore small values of n, since we are usually interested in estimating how 
slow the program will be on large inputs. 

A good rule of thumb is that the slower the asymptotic growth rate, the better the 
algorithm. Though it’s not always true. 

For example, a linear algorithm f(n)=d∗n+kf(n)=d∗n+k is always asymptotically better 

than a quadratic one, f(n)=c.n2+qf(n)=c.n2+q. 

To measure resource consumption of an algorithm, different strategies are used as 
discussed in this chapter. 

Solving Recurrence Equations 



A recurrence is an equation or inequality that describes a function in terms of its value 
on smaller inputs. Recurrences are generally used in divide-and-conquer paradigm. 

Let us consider T(n) to be the running time on a problem of size n. 

If the problem size is small enough, say n < c where c is a constant, the straightforward 
solution takes constant time, which is written as θ(1). If the division of the problem yields 
a number of sub-problems with size nbnb. 

To solve the problem, the required time is a.T(n/b). If we consider the time required for 
division is D(n) and the time required for combining the results of sub-problems is C(n), 
the recurrence relation can be represented as − 

T(n)={θ(1)aT(nb)+D(n)+C(n)ifn⩽cotherwiseT(n)={θ(1)ifn⩽caT(nb)+D(n)+C(n)otherwise 

A recurrence relation can be solved using the following methods − 

• Substitution Method − In this method, we guess a bound and using mathematical induction 
we prove that our assumption was correct. 

• Recursion Tree Method − In this method, a recurrence tree is formed where each node 
represents the cost. 

• Master’s Theorem − This is another important technique to find the complexity of a 
recurrence relation. 

Asymptotic Notations 

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O 
speed, etc. Hence, we estimate the efficiency of an algorithm asymptotically. 

Time function of an algorithm is represented by T(n), where n is the input size. 

Different types of asymptotic notations are used to represent the complexity of an 
algorithm. Following asymptotic notations are used to calculate the running time 
complexity of an algorithm. 

• O − Big Oh 

• Ω − Big omega 

• θ − Big theta 

• o − Little Oh 

• ω − Little omega 

O: Asymptotic Upper Bound 

‘O’ (Big Oh) is the most commonly used notation. A function f(n) can be represented is 
the order of g(n) that is O(g(n)), if there exists a value of positive integer n as n0 and a 
positive constant c such that − 

f(n)⩽c.g(n)f(n)⩽c.g(n) for n>n0n>n0 in all case 



Hence, function g(n) is an upper bound for function f(n), as g(n) grows faster than f(n). 

Example 

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1f(n)=4.n3+10.n2+5.n+1 

Considering g(n)=n3g(n)=n3, 

f(n)⩽5.g(n)f(n)⩽5.g(n) for all the values of n>2n>2 

Hence, the complexity of f(n) can be represented as O(g(n))O(g(n)), i.e. O(n3)O(n3) 

Ω: Asymptotic Lower Bound 

We say that f(n)=Ω(g(n))f(n)=Ω(g(n)) when there exists 

constant c that f(n)⩾c.g(n)f(n)⩾c.g(n) for all sufficiently large value of n. Here n is a 

positive integer. It means function g is a lower bound for function f; after a certain value 
of n, f will never go below g. 

Example 

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1f(n)=4.n3+10.n2+5.n+1. 

Considering g(n)=n3g(n)=n3, f(n)⩾4.g(n)f(n)⩾4.g(n) for all the values of n>0n>0. 

Hence, the complexity of f(n) can be represented as Ω(g(n))Ω(g(n)), i.e. Ω(n3)Ω(n3) 

θ: Asymptotic Tight Bound 

We say that f(n)=θ(g(n))f(n)=θ(g(n)) when there exist 

constants c1 and c2 that c1.g(n)⩽f(n)⩽c2.g(n)c1.g(n)⩽f(n)⩽c2.g(n) for all sufficiently 

large value of n. Here n is a positive integer. 

This means function g is a tight bound for function f. 

Example 

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1f(n)=4.n3+10.n2+5.n+1 

Considering g(n)=n3g(n)=n3, 4.g(n)⩽f(n)⩽5.g(n)4.g(n)⩽f(n)⩽5.g(n) for all the large 

values of n. 

Hence, the complexity of f(n) can be represented as θ(g(n))θ(g(n)), i.e. θ(n3)θ(n3). 

O - Notation 

The asymptotic upper bound provided by O-notation may or may not be asymptotically 

tight. The bound 2.n2=O(n2)2.n2=O(n2) is asymptotically tight, but the 

bound 2.n=O(n2)2.n=O(n2) is not. 

We use o-notation to denote an upper bound that is not asymptotically tight. 

We formally define o(g(n)) (little-oh of g of n) as the set f(n) = o(g(n)) for any positive 

constant c>0c>0 and there exists a value n0>0n0>0, such 

that 0⩽f(n)⩽c.g(n)0⩽f(n)⩽c.g(n). 



Intuitively, in the o-notation, the function f(n) becomes insignificant relative 
to g(n) as n approaches infinity; that is, 

limn→∞(f(n)g(n))=0limn→∞(f(n)g(n))=0 

Example 

Let us consider the same function, f(n)=4.n3+10.n2+5.n+1f(n)=4.n3+10.n2+5.n+1 

Considering g(n)=n4g(n)=n4, 

limn→∞(4.n3+10.n2+5.n+1n4)=0limn→∞(4.n3+10.n2+5.n+1n4)=0 

Hence, the complexity of f(n) can be represented as o(g(n))o(g(n)), i.e. o(n4)o(n4). 

ω – Notation 

We use ω-notation to denote a lower bound that is not asymptotically tight. Formally, 
however, we define ω(g(n)) (little-omega of g of n) as the set f(n) = ω(g(n)) for any 

positive constant C > 0 and there exists a value n0>0n0>0, such 

that 0⩽c.g(n)<f(n)0⩽c.g(n)<f(n). 

For example, n22=ω(n)n22=ω(n), but n22≠ω(n2)n22≠ω(n2). The 

relation f(n)=ω(g(n))f(n)=ω(g(n)) implies that the following limit exists 

limn→∞(f(n)g(n))=∞limn→∞(f(n)g(n))=∞ 

That is, f(n) becomes arbitrarily large relative to g(n) as n approaches infinity. 

Example 

Let us consider same function, f(n)=4.n3+10.n2+5.n+1f(n)=4.n3+10.n2+5.n+1 

Considering g(n)=n2g(n)=n2, 

limn→∞(4.n3+10.n2+5.n+1n2)=∞limn→∞(4.n3+10.n2+5.n+1n2)=∞ 

Hence, the complexity of f(n) can be represented as o(g(n))o(g(n)), i.e. ω(n2)ω(n2). 

Asymptotic Notations 

Execution time of an algorithm depends on the instruction set, processor speed, disk I/O 
speed, etc. Hence, we estimate the efficiency of an algorithm asymptotically. 

Time function of an algorithm is represented by T(n), where n is the input size. 

Different types of asymptotic notations are used to represent the complexity of an 
algorithm. Following asymptotic notations are used to calculate the running time 
complexity of an algorithm. 

• O − Big Oh 

• Ω − Big omega 

• θ − Big theta 

• o − Little Oh 



• ω − Little omega 

O: Asymptotic Upper Bound 

‘O’ (Big Oh) is the most commonly used notation. A function f(n) can be represented is 
the order of g(n) that is O(g(n)), if there exists a value of positive integer n as n0 and a 
positive constant c such that – 

 

                               f(n)⩽c.g(n)    for n>n0n>n0 

 
 in all caseHence, function g(n) is an upper bound for function f(n), as g(n) grows faster 
than f(n). 

Example 

Let us consider a given function,     f(n)=4.n3+10.n2+5.n+1   
 

Considering                  g(n)=n3g(n)=n3, 

 

f(n)⩽5.g(n) for all the values of n>2n>2 

 

Hence, the complexity of f(n) can be represented as O(g(n)) i.e. O(n3) 

Ω: Asymptotic Lower Bound 

We say that  
 

 f(n)=Ω(g(n)) when there exists constant c that f(n)⩾c.g(n) for all sufficiently  

 
large value of n. Here n is a positive integer. It means function g is a lower bound for 
function f; after a certain value of n, f will never go below g. 
 

Example 

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1 
 

Considering g(n)=n3,  f(n)⩾4     for all the values of n>0. 

 

Hence, the complexity of f(n) can be represented as Ω(g(n)) i.e. Ω(n3) 

θ: Asymptotic Tight Bound 

We say that f(n)=θ(g(n)) when there exist constants c1 and c2 that c1.g(n)⩽f(n)⩽c2.g(n) 
for all sufficiently large value of n. Here n is a positive integer. 

This means function g is a tight bound for function f. 



Example 

Let us consider a given function, f(n)=4.n3+10.n2+5.n+1 

Considering g(n)=n3, 4.g(n)⩽f(n)⩽5.g(n) for all the large values of n. 

Hence, the complexity of f(n) can be represented as θ(g(n))θ(g(n)), i.e. θ(n3)θ(n3). 

O - Notation 

The asymptotic upper bound provided by O-notation may or may not be asymptotically 

tight. The bound 2.n2=O(n2) is asymptotically tight, but the bound 2.n=O(n2) is not. 

 

We use o-notation to denote an upper bound that is not asymptotically tight. 

We formally define o(g(n)) (little-oh of g of n) as the set f(n) = o(g(n)) for any positive 

constant c>0 and there exists a value n0>0, such that 0⩽f(n)⩽c.g(n) 

Intuitively, in the o-notation, the function f(n) becomes insignificant relative 
to g(n) as n approaches infinity; that is, 

Limn→∞(f(n)/g(n)) 

MODULE-2 

Binary search  

Binary search can be performed on a sorted array. In this approach, the index of an 
element x is determined if the element belongs to the list of elements. If the array is 
unsorted, linear search is used to determine the position. 

Solution 

In this algorithm, we want to find whether element x belongs to a set of numbers stored 
in an array numbers[]. Where l and r represent the left and right index of a sub-array in 
which searching operation should be performed. 

Analysis 

Linear search runs in O(n) time. Whereas binary search produces the result in O(log 
n) time 

Let T(n) be the number of comparisons in worst-case in an array of n elements. 

Hence, 

T(n)={0T(n2)+1ifn=1otherwiseT(n)={0ifn=1T(n2)+1otherwise 

Using this recurrence relation T(n)=lognT(n)=logn. 

Therefore, binary search uses O(logn)O(logn) time. 



Example 

In this example, we are going to search element 63. 

 

Greedy algorithms build a solution part by part, choosing the next part in such a way, 
that it gives an immediate benefit. This approach never reconsiders the choices taken 
previously. This approach is mainly used to solve optimization problems. Greedy method 
is easy to implement and quite efficient in most of the cases. Hence, we can say that 
Greedy algorithm is an algorithmic paradigm based on heuristic that follows local optimal 
choice at each step with the hope of finding global optimal solution. 

In many problems, it does not produce an optimal solution though it gives an approximate 
(near optimal) solution in a reasonable time. 

Components of Greedy Algorithm 

Greedy algorithms have the following five components − 

• A candidate set − A solution is created from this set. 

• A selection function − Used to choose the best candidate to be added to the solution. 

• A feasibility function − Used to determine whether a candidate can be used to contribute to 
the solution. 

• An objective function − Used to assign a value to a solution or a partial solution. 

• A solution function − Used to indicate whether a complete solution has been reached. 

Areas of Application 

Greedy approach is used to solve many problems, such as 



• Finding the shortest path between two vertices using Dijkstra’s algorithm. 

• Finding the minimal spanning tree in a graph using Prim’s /Kruskal’s algorithm, etc. 

Where Greedy Approach Fails 

In many problems, Greedy algorithm fails to find an optimal solution, moreover it may 
produce a worst solution. Problems like Travelling Salesman and Knapsack cannot be 
solved using this approach. 

The Greedy algorithm could be understood very well with a well-known problem referred 
to as Knapsack problem. Although the same problem could be solved by employing other 
algorithmic approaches, Greedy approach solves Fractional Knapsack problem 
reasonably in a good time. Let us discuss the Knapsack problem in detail. 

Knapsack Problem 

Given a set of items, each with a weight and a value, determine a subset of items to 
include in a collection so that the total weight is less than or equal to a given limit and 
the total value is as large as possible. 

The knapsack problem is in combinatorial optimization problem. It appears as a 
subproblem in many, more complex mathematical models of real-world problems. One 
general approach to difficult problems is to identify the most restrictive constraint, ignore 
the others, solve a knapsack problem, and somehow adjust the solution to satisfy the 
ignored constraints. 

Applications 

In many cases of resource allocation along with some constraint, the problem can be 
derived in a similar way of Knapsack problem. Following is a set of example. 

• Finding the least wasteful way to cut raw materials 

• portfolio optimization 

• Cutting stock problems 

Problem Scenario 

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There 
are n items available in the store and weight of ith item is wi and its profit is pi. What items 
should the thief take? 

In this context, the items should be selected in such a way that the thief will carry those 
items for which he will gain maximum profit. Hence, the objective of the thief is to 
maximize the profit. 

Based on the nature of the items, Knapsack problems are categorized as 

• Fractional Knapsack 

• Knapsack 



Fractional Knapsack 

In this case, items can be broken into smaller pieces, hence the thief can select fractions 
of items. 

According to the problem statement, 

• There are n items in the store 

• Weight of ith item wi>0wi>0 

• Profit for ith item pi>0pi>0 and 

• Capacity of the Knapsack is W 

In this version of Knapsack problem, items can be broken into smaller pieces. So, the 
thief may take only a fraction xi of ith item. 

0⩽xi⩽10⩽xi⩽1 

The ith item contributes the weight xi.wixi.wi to the total weight in the knapsack and 

profit xi.pixi.pi to the total profit. 

Hence, the objective of this algorithm is to 

maximize∑n=1n(xi.pi)maximize∑n=1n(xi.pi) 

subject to constraint, 

∑n=1n(xi.wi)⩽W∑n=1n(xi.wi)⩽W 

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add 
a fraction of one of the remaining items and increase the overall profit. 

Thus, an optimal solution can be obtained by 

∑n=1n(xi.wi)=W∑n=1n(xi.wi)=W 

In this context, first we need to sort those items according to the value of piwipiwi, so 
that pi+1wi+1pi+1wi+1 ≤ piwipiwi . Here, x is an array to store the fraction of items. 
Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)  

for i = 1 to n  

   do x[i] = 0  

weight = 0  

for i = 1 to n  

   if weight + w[i] ≤ W then   

      x[i] = 1  

      weight = weight + w[i]  

   else  

      x[i] = (W - weight) / w[i]  

      weight = W  

      break  

return x 



Analysis 

If the provided items are already sorted into a decreasing order of piwipiwi, then the 
whileloop takes a time in O(n); Therefore, the total time including the sort is in O(n logn). 

Example 

Let us consider that the capacity of the knapsack W = 60 and the list of provided items 
are shown in the following table − 

Item A B C D 

Profit 280 100 120 120 

Weight 40 10 20 24 

Ratio (piwi)(piwi) 7 10 6 5 

As the provided items are not sorted based on piwipiwi. After sorting, the items are as 
shown in the following table. 

Item B A C D 

Profit 100 280 120 120 

Weight 10 40 20 24 

Ratio (piwi)(piwi) 10 7 6 5 

Solution 
After sorting all the items according to piwipiwi. First all of B is chosen as weight of B is 
less than the capacity of the knapsack. Next, item A is chosen, as the available capacity 
of the knapsack is greater than the weight of A. Now, C is chosen as the next item. 
However, the whole item cannot be chosen as the remaining capacity of the knapsack 
is less than the weight of C. 

Hence, fraction of C (i.e. (60 − 50)/20) is chosen. 

Now, the capacity of the Knapsack is equal to the selected items. Hence, no more item 
can be selected. 

The total weight of the selected items is 10 + 40 + 20 * (10/20) = 60 

And the total profit is 100 + 280 + 120 * (10/20) = 380 + 60 = 440 



This is the optimal solution. We cannot gain more profit selecting any different 
combination of items. 

Merge a set of sorted files of different length into a single sorted file. We need to find an 
optimal solution, where the resultant file will be generated in minimum time. 

If the number of sorted files are given, there are many ways to merge them into a single 
sorted file. This merge can be performed pair wise. Hence, this type of merging is called 
as 2-way merge patterns. 

As, different pairings require different amounts of time, in this strategy we want to 
determine an optimal way of merging many files together. At each step, two shortest 
sequences are merged. 

To merge a p-record file and a q-record file requires possibly p + q record moves, the 
obvious choice being, merge the two smallest files together at each step. 

Two-way merge patterns can be represented by binary merge trees. Let us consider a 
set of n sorted files {f1, f2, f3, …, fn}. Initially, each element of this is considered as a single 
node binary tree. To find this optimal solution, the following algorithm is used. 

Algorithm: TREE (n)   

for i := 1 to n – 1 do   

   declare new node   

   node.leftchild := least (list)  

   node.rightchild := least (list)  

   node.weight) := ((node.leftchild).weight) + 

((node.rightchild).weight)   

   insert (list, node);   

return least (list);  

At the end of this algorithm, the weight of the root node represents the optimal cost. 

Example 

Let us consider the given files, f1, f2, f3, f4 and f5 with 20, 30, 10, 5 and 30 number of 
elements respectively. 

If merge operations are performed according to the provided sequence, then 

M1 = merge f1 and f2 => 20 + 30 = 50 

M2 = merge M1 and f3 => 50 + 10 = 60 

M3 = merge M2 and f4 => 60 + 5 = 65 

M4 = merge M3 and f5 => 65 + 30 = 95 

Hence, the total number of operations is 

50 + 60 + 65 + 95 = 270 

Now, the question arises is there any better solution? 



Sorting the numbers according to their size in an ascending order, we get the following 
sequence − 

f4, f3, f1, f2, f5 

Hence, merge operations can be performed on this sequence 

M1 = merge f4 and f3 => 5 + 10 = 15 

M2 = merge M1 and f1 => 15 + 20 = 35 

M3 = merge M2 and f2 => 35 + 30 = 65 

M4 = merge M3 and f5 => 65 + 30 = 95 

Therefore, the total number of operations is 

15 + 35 + 65 + 95 = 210 

Obviously, this is better than the previous one. 

In this context, we are now going to solve the problem using this algorithm. 

Initial Set 

 

Step-1 

 

Step-2 

 

Step-3 

 



Step-4 

 

Hence, the solution takes 15 + 35 + 60 + 95 = 205 number of comparisons. 

Dynamic Programming is also used in optimization problems. Like divide-and-conquer 
method, Dynamic Programming solves problems by combining the solutions of 
subproblems. Moreover, Dynamic Programming algorithm solves each sub-problem just 
once and then saves its answer in a table, thereby avoiding the work of re-computing 
the answer every time. 

Two main properties of a problem suggest that the given problem can be solved using 
Dynamic Programming. These properties are overlapping sub-problems and optimal 
substructure. 

Overlapping Sub-Problems 

Similar to Divide-and-Conquer approach, Dynamic Programming also combines 
solutions to sub-problems. It is mainly used where the solution of one sub-problem is 
needed repeatedly. The computed solutions are stored in a table, so that these don’t 
have to be re-computed. Hence, this technique is needed where overlapping sub-
problem exists. 

For example, Binary Search does not have overlapping sub-problem. Whereas recursive 
program of Fibonacci numbers have many overlapping sub-problems. 

Optimal Sub-Structure 

A given problem has Optimal Substructure Property, if the optimal solution of the given 
problem can be obtained using optimal solutions of its sub-problems. 

For example, the Shortest Path problem has the following optimal substructure property 
− 

If a node x lies in the shortest path from a source node u to destination node v, then the 
shortest path from u to v is the combination of the shortest path from u to x, and the 
shortest path from x to v. 



The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-Ford 
are typical examples of Dynamic Programming. 

Steps of Dynamic Programming Approach 

Dynamic Programming algorithm is designed using the following four steps − 

• Characterize the structure of an optimal solution. 

• Recursively define the value of an optimal solution. 

• Compute the value of an optimal solution, typically in a bottom-up fashion. 

• Construct an optimal solution from the computed information. 

Applications of Dynamic Programming Approach 

• Matrix Chain Multiplication 

• Longest Common Subsequence 

• Travelling Salesman Problem 

Dynamic Programming is also used in optimization problems. Like divide-and-conquer 
method, Dynamic Programming solves problems by combining the solutions of 
subproblems. Moreover, Dynamic Programming algorithm solves each sub-problem just 
once and then saves its answer in a table, thereby avoiding the work of re-computing 
the answer every time. 

Two main properties of a problem suggest that the given problem can be solved using 
Dynamic Programming. These properties are overlapping sub-problems and optimal 
substructure. 

Overlapping Sub-Problems 

Similar to Divide-and-Conquer approach, Dynamic Programming also combines 
solutions to sub-problems. It is mainly used where the solution of one sub-problem is 
needed repeatedly. The computed solutions are stored in a table, so that these don’t 
have to be re-computed. Hence, this technique is needed where overlapping sub-
problem exists. 

For example, Binary Search does not have overlapping sub-problem. Whereas recursive 
program of Fibonacci numbers have many overlapping sub-problems. 

Optimal Sub-Structure 

A given problem has Optimal Substructure Property, if the optimal solution of the given 
problem can be obtained using optimal solutions of its sub-problems. 

For example, the Shortest Path problem has the following optimal substructure property 
− 



If a node x lies in the shortest path from a source node u to destination node v, then the 
shortest path from u to v is the combination of the shortest path from u to x, and the 
shortest path from x to v. 

The standard All Pair Shortest Path algorithms like Floyd-Warshall and Bellman-Ford 
are typical examples of Dynamic Programming. 

Steps of Dynamic Programming Approach 

Dynamic Programming algorithm is designed using the following four steps − 

• Characterize the structure of an optimal solution. 

• Recursively define the value of an optimal solution. 

• Compute the value of an optimal solution, typically in a bottom-up fashion. 

• Construct an optimal solution from the computed information. 

Applications of Dynamic Programming Approach 

• Matrix Chain Multiplication 

• Longest Common Subsequence 

• Travelling Salesman Problem 

we have discussed Fractional Knapsack problem using Greedy approach. We have 
shown that Greedy approach gives an optimal solution for Fractional Knapsack. 
However, this chapter will cover 0-1 Knapsack problem and its analysis. 

In 0-1 Knapsack, items cannot be broken which means the thief should take the item as 
a whole or should leave it. This is reason behind calling it as 0-1 Knapsack. 

Hence, in case of 0-1 Knapsack, the value of xi can be either 0 or 1, where other 
constraints remain the same. 

0-1 Knapsack cannot be solved by Greedy approach. Greedy approach does not ensure 
an optimal solution. In many instances, Greedy approach may give an optimal solution. 

The following examples will establish our statement. 

Example-1 

Let us consider that the capacity of the knapsack is W = 25 and the items are as shown 
in the following table. 

Item A B C D 

Profit 24 18 18 10 



Weight 24 10 10 7 

Without considering the profit per unit weight (pi/wi), if we apply Greedy approach to 
solve this problem, first item A will be selected as it will contribute maximum profit among 
all the elements. 

After selecting item A, no more item will be selected. Hence, for this given set of items 
total profit is 24. Whereas, the optimal solution can be achieved by selecting 
items, B and C, where the total profit is 18 + 18 = 36. 

Example-2 

Instead of selecting the items based on the overall benefit, in this example the items are 
selected based on ratio pi/wi. Let us consider that the capacity of the knapsack is W = 60 
and the items are as shown in the following table. 

Item A B C 

Price 100 280 120 

Weight 10 40 20 

Ratio 10 7 6 

Using the Greedy approach, first item A is selected. Then, the next item B is chosen. 
Hence, the total profit is 100 + 280 = 380. However, the optimal solution of this instance 
can be achieved by selecting items, B and C, where the total profit is 280 + 120 = 400. 

Hence, it can be concluded that Greedy approach may not give an optimal solution. 

To solve 0-1 Knapsack, Dynamic Programming approach is required. 

Problem Statement 

A thief is robbing a store and can carry a maximal weight of W into his knapsack. There 
are n items and weight of ith item is wi and the profit of selecting this item is pi. What 
items should the thief take? 

Dynamic-Programming Approach 

Let i be the highest-numbered item in an optimal solution S for W dollars. Then S' = S - 
{i} is an optimal solution for W - wi dollars and the value to the solution S is Vi plus the 
value of the sub-problem. 



We can express this fact in the following formula: define c[i, w] to be the solution for 
items 1,2, … , i and the maximum weight w. 

The algorithm takes the following inputs 

• The maximum weight W 

• The number of items n 

• The two sequences v = <v1, v2, …, vn> and w = <w1, w2, …, wn> 

Dynamic-0-1-knapsack (v, w, n, W)  

for w = 0 to W do  

   c[0, w] = 0  

for i = 1 to n do  

   c[i, 0] = 0  

   for w = 1 to W do  

      if wi ≤ w then  

         if vi + c[i-1, w-wi] then  

            c[i, w] = vi + c[i-1, w-wi]  

         else c[i, w] = c[i-1, w]  

      else  

         c[i, w] = c[i-1, w]  

The set of items to take can be deduced from the table, starting at c[n, w] and tracing 
backwards where the optimal values came from. 

If c[i, w] = c[i-1, w], then item i is not part of the solution, and we continue tracing with c[i-
1, w]. Otherwise, item i is part of the solution, and we continue tracing with c[i-1, w-W]. 

Analysis 

This algorithm takes θ(n, w) times as table c has (n + 1).(w + 1) entries, where each entry 
requires θ(1) time to compute. 

• The longest common subsequence problem is finding the longest sequence 
which exists in both the given strings. 

Subsequence 

Let us consider a sequence S = <s1, s2, s3, s4, …,sn>. 

A sequence Z = <z1, z2, z3, z4, …,zm> over S is called a subsequence of S, if and only if it 
can be derived from S deletion of some elements. 

Common Subsequence 

Suppose, X and Y are two sequences over a finite set of elements. We can say that Z is 
a common subsequence of X and Y, if Z is a subsequence of both X and Y. 

Longest Common Subsequence 



If a set of sequences are given, the longest common subsequence problem is to find a 
common subsequence of all the sequences that is of maximal length. 

The longest common subsequence problem is a classic computer science problem, the 
basis of data comparison programs such as the diff-utility, and has applications in 
bioinformatics. It is also widely used by revision control systems, such as SVN and Git, 
for reconciling multiple changes made to a revision-controlled collection of files. 

Naïve Method 

Let X be a sequence of length m and Y a sequence of length n. Check for every 
subsequence of X whether it is a subsequence of Y, and return the longest common 
subsequence found. 

There are 2m subsequences of X. Testing sequences whether or not it is a subsequence 
of Y takes O(n) time. Thus, the naïve algorithm would take O(n2m) time. 

Dynamic Programming 

Let X = < x1, x2, x3,…, xm > and Y = < y1, y2, y3,…, yn > be the sequences. To compute the 
length of an element the following algorithm is used. 

In this procedure, table C[m, n] is computed in row major order and another 
table B[m,n] is computed to construct optimal solution. 

Algorithm: LCS-Length-Table-Formulation (X, Y) 

m := length(X)  

n := length(Y)  

for i = 1 to m do  

   C[i, 0] := 0  

for j = 1 to n do  

   C[0, j] := 0  

for i = 1 to m do  

   for j = 1 to n do  

      if xi = yj  

         C[i, j] := C[i - 1, j - 1] + 1  

         B[i, j] := ‘D’  

      else  

         if C[i -1, j] ≥ C[i, j -1]  

            C[i, j] := C[i - 1, j] + 1  

            B[i, j] := ‘U’  

         else  

         C[i, j] := C[i, j - 1] 

         B[i, j] := ‘L’  

return C and B 

Algorithm: Print-LCS (B, X, i, j) 

if i = 0 and j = 0  

   return   

if B[i, j] = ‘D’  



   Print-LCS(B, X, i-1, j-1)  

   Print(xi)  

else if B[i, j] = ‘U’  

   Print-LCS(B, X, i-1, j)  

else  

   Print-LCS(B, X, i, j-1)  

This algorithm will print the longest common subsequence of X and Y. 

Analysis 

To populate the table, the outer for loop iterates m times and the inner for loop 
iterates n times. Hence, the complexity of the algorithm is O(m, n), where m and n are 
the length of two strings. 

Example 

In this example, we have two strings X = BACDB and Y = BDCB to find the longest 
common subsequence. 

Following the algorithm LCS-Length-Table-Formulation (as stated above), we have 
calculated table C (shown on the left hand side) and table B (shown on the right hand 
side). 

In table B, instead of ‘D’, ‘L’ and ‘U’, we are using the diagonal arrow, left arrow and up 
arrow, respectively. After generating table B, the LCS is determined by function LCS-
Print. The result is BCB. 

 

 

A spanning tree is a subset of an undirected Graph that has all the vertices connected 
by minimum number of edges. 

If all the vertices are connected in a graph, then there exists at least one spanning tree. 
In a graph, there may exist more than one spanning tree. 



Properties 

• A spanning tree does not have any cycle. 

• Any vertex can be reached from any other vertex. 

Example 

In the following graph, the highlighted edges form a spanning tree. 

 

Minimum Spanning Tree 

A Minimum Spanning Tree (MST) is a subset of edges of a connected weighted 
undirected graph that connects all the vertices together with the minimum possible total 
edge weight. To derive an MST, Prim’s algorithm or Kruskal’s algorithm can be used. 
Hence, we will discuss Prim’s algorithm in this chapter. 

As we have discussed, one graph may have more than one spanning tree. If there 
are n number of vertices, the spanning tree should have n - 1 number of edges. In this 
context, if each edge of the graph is associated with a weight and there exists more than 
one spanning tree, we need to find the minimum spanning tree of the graph. 

Moreover, if there exist any duplicate weighted edges, the graph may have multiple 
minimum spanning tree. 



 

In the above graph, we have shown a spanning tree though it’s not the minimum 
spanning tree. The cost of this spanning tree is (5 + 7 + 3 + 3 + 5 + 8 + 3 + 4) = 38. 

We will use Prim’s algorithm to find the minimum spanning tree. 

Prim’s Algorithm 

Prim’s algorithm is a greedy approach to find the minimum spanning tree. In this 
algorithm, to form a MST we can start from an arbitrary vertex. 

Algorithm: MST-Prim’s (G, w, r)  

for each u є G.V  

   u.key = ∞  

   u.∏ = NIL  

r.key = 0  

Q = G.V  

while Q ≠ Ф  

   u = Extract-Min (Q)  

   for each v є G.adj[u]  

      if each v є Q and w(u, v) < v.key  

         v.∏ = u  

         v.key = w(u, v)  

The function Extract-Min returns the vertex with minimum edge cost. This function works 
on min-heap. 

Example 

Using Prim’s algorithm, we can start from any vertex, let us start from vertex 1. 

Vertex 3 is connected to vertex 1 with minimum edge cost, hence edge (1, 2) is added 
to the spanning tree. 

Next, edge (2, 3) is considered as this is the minimum among edges {(1, 2), (2, 3), (3, 
4), (3, 7)}. 

In the next step, we get edge (3, 4) and (2, 4) with minimum cost. Edge (3, 4) is selected 
at random. 



In a similar way, edges (4, 5), (5, 7), (7, 8), (6, 8) and (6, 9) are selected. As all the 
vertices are visited, now the algorithm stops. 

The cost of the spanning tree is (2 + 2 + 3 + 2 + 5 + 2 + 3 + 4) = 23. There is no more 
spanning tree in this graph with cost less than 23. 

 

 

Dijkstra’s Algorithm 

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed 
weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 for 
each edge (u, v) Є E). 

In the following algorithm, we will use one function Extract-Min(), which extracts the 
node with the smallest key. 

Algorithm: Dijkstra’s-Algorithm (G, w, s)  

for each vertex v Є G.V   

   v.d := ∞  

   v.∏ := NIL  

s.d := 0  

S := Ф  

Q := G.V  

while Q ≠ Ф  

   u := Extract-Min (Q)  

   S := S U {u}  

   for each vertex v Є G.adj[u]  

      if v.d > u.d + w(u, v)  

         v.d := u.d + w(u, v)  

         v.∏ := u 

Analysis 

The complexity of this algorithm is fully dependent on the implementation of Extract-Min 
function. If extract min function is implemented using linear search, the complexity of this 
algorithm is O(V2 + E). 



In this algorithm, if we use min-heap on which Extract-Min() function works to return the 
node from Q with the smallest key, the complexity of this algorithm can be reduced 
further. 

Example 

Let us consider vertex 1 and 9 as the start and destination vertex respectively. Initially, 
all the vertices except the start vertex are marked by ∞ and the start vertex is marked 
by 0. 

Vertex Initial Step1 V1 Step2 V3 Step3 V2 Step4 V4 Step5 V5 Step6 V7 Step7 V8 Step8 V6 

1 0 0 0 0 0 0 0 0 0 

2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 

8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 

1→ 3→ 7→ 8→ 6→ 9 

This path is determined based on predecessor information. 



 

Bellman Ford Algorithm 

This algorithm solves the single source shortest path problem of a directed graph G = 
(V, E) in which the edge weights may be negative. Moreover, this algorithm can be 
applied to find the shortest path, if there does not exist any negative weighted cycle. 

Algorithm: Bellman-Ford-Algorithm (G, w, s)  

for each vertex v Є G.V   

   v.d := ∞  

   v.∏ := NIL  

s.d := 0  

for i = 1 to |G.V| - 1  

   for each edge (u, v) Є G.E  

      if v.d > u.d + w(u, v)  

         v.d := u.d +w(u, v)  

         v.∏ := u  

for each edge (u, v) Є G.E  

   if v.d > u.d + w(u, v)  

      return FALSE  

return TRUE 

Analysis 

The first for loop is used for initialization, which runs in O(V) times. The next for loop 
runs |V - 1| passes over the edges, which takes O(E) times. 

Hence, Bellman-Ford algorithm runs in O(V, E) time. 

Example 

The following example shows how Bellman-Ford algorithm works step by step. This 
graph has a negative edge but does not have any negative cycle, hence the problem 
can be solved using this technique. 

At the time of initialization, all the vertices except the source are marked by ∞ and the 
source is marked by 0. 



 

In the first step, all the vertices which are reachable from the source are updated by 
minimum cost. Hence, vertices a and h are updated. 

 

In the next step, vertices a, b, f and e are updated. 

 



Following the same logic, in this step vertices b, f, c and g are updated. 

 

Here, vertices c and d are updated. 

 

Hence, the minimum distance between vertex s and vertex d is 20. 

Based on the predecessor information, the path is s→ h→ e→ g→ c→ d 

Dijkstra’s Algorithm 

Dijkstra’s algorithm solves the single-source shortest-paths problem on a directed 
weighted graph G = (V, E), where all the edges are non-negative (i.e., w(u, v) ≥ 0 for 
each edge (u, v) Є E). 

In the following algorithm, we will use one function Extract-Min(), which extracts the 
node with the smallest key. 

Algorithm: Dijkstra’s-Algorithm (G, w, s)  

for each vertex v Є G.V   

   v.d := ∞  

   v.∏ := NIL  



s.d := 0  

S := Ф  

Q := G.V  

while Q ≠ Ф  

   u := Extract-Min (Q)  

   S := S U {u}  

   for each vertex v Є G.adj[u]  

      if v.d > u.d + w(u, v)  

         v.d := u.d + w(u, v)  

         v.∏ := u 

Analysis 

The complexity of this algorithm is fully dependent on the implementation of Extract-Min 
function. If extract min function is implemented using linear search, the complexity of this 
algorithm is O(V2 + E). 

In this algorithm, if we use min-heap on which Extract-Min() function works to return the 
node from Q with the smallest key, the complexity of this algorithm can be reduced 
further. 

Example 

Let us consider vertex 1 and 9 as the start and destination vertex respectively. Initially, 
all the vertices except the start vertex are marked by ∞ and the start vertex is marked 
by 0. 

Vertex Initial Step1 V1 Step2 V3 Step3 V2 Step4 V4 Step5 V5 Step6 V7 Step7 V8 Step8 V6 

1 0 0 0 0 0 0 0 0 0 

2 ∞ 5 4 4 4 4 4 4 4 

3 ∞ 2 2 2 2 2 2 2 2 

4 ∞ ∞ ∞ 7 7 7 7 7 7 

5 ∞ ∞ ∞ 11 9 9 9 9 9 

6 ∞ ∞ ∞ ∞ ∞ 17 17 16 16 

7 ∞ ∞ 11 11 11 11 11 11 11 



8 ∞ ∞ ∞ ∞ ∞ 16 13 13 13 

9 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 20 

Hence, the minimum distance of vertex 9 from vertex 1 is 20. And the path is 

1→ 3→ 7→ 8→ 6→ 9 

This path is determined based on predecessor information. 

 

Bellman Ford Algorithm 

This algorithm solves the single source shortest path problem of a directed graph G = 
(V, E) in which the edge weights may be negative. Moreover, this algorithm can be 
applied to find the shortest path, if there does not exist any negative weighted cycle. 

Algorithm: Bellman-Ford-Algorithm (G, w, s)  

for each vertex v Є G.V   

   v.d := ∞  

   v.∏ := NIL  

s.d := 0  

for i = 1 to |G.V| - 1  

   for each edge (u, v) Є G.E  

      if v.d > u.d + w(u, v)  

         v.d := u.d +w(u, v)  

         v.∏ := u  

for each edge (u, v) Є G.E  

   if v.d > u.d + w(u, v)  

      return FALSE  

return TRUE 



Analysis 

The first for loop is used for initialization, which runs in O(V) times. The next for loop 
runs |V - 1| passes over the edges, which takes O(E) times. 

Hence, Bellman-Ford algorithm runs in O(V, E) time. 

Example 

The following example shows how Bellman-Ford algorithm works step by step. This 
graph has a negative edge but does not have any negative cycle, hence the problem 
can be solved using this technique. 

At the time of initialization, all the vertices except the source are marked by ∞ and the 
source is marked by 0. 

 

In the first step, all the vertices which are reachable from the source are updated by 
minimum cost. Hence, vertices a and h are updated. 

 

In the next step, vertices a, b, f and e are updated. 



 

Following the same logic, in this step vertices b, f, c and g are updated. 

 

Here, vertices c and d are updated. 

 

Hence, the minimum distance between vertex s and vertex d is 20. 



Based on the predecessor information, the path is s→ h→ e→ g→ c→ d 

TRAVELLING SALESMAN PROBLEM 

Problem Statement 

A traveler needs to visit all the cities from a list, where distances between all the cities 
are known and each city should be visited just once. What is the shortest possible route 
that he visits each city exactly once and returns to the origin city? 

Solution 

Travelling salesman problem is the most notorious computational problem. We can use 
brute-force approach to evaluate every possible tour and select the best one. 
For n number of vertices in a graph, there are (n - 1)! number of possibilities. 

Instead of brute-force using dynamic programming approach, the solution can be 
obtained in lesser time, though there is no polynomial time algorithm. 

Let us consider a graph G = (V, E), where V is a set of cities and E is a set of weighted 
edges. An edge e(u, v) represents that vertices u and v are connected. Distance 
between vertex u and v is d(u, v), which should be non-negative. 

Suppose we have started at city 1 and after visiting some cities now we are in city j. 
Hence, this is a partial tour. We certainly need to know j, since this will determine which 
cities are most convenient to visit next. We also need to know all the cities visited so far, 
so that we don't repeat any of them. Hence, this is an appropriate sub-problem. 

For a subset of cities S Є {1, 2, 3, ... , n} that includes 1, and j Є S, let C(S, j) be the 
length of the shortest path visiting each node in S exactly once, starting at 1 and ending 
at j. 

When |S| > 1, we define C(S, 1) = ∝ since the path cannot start and end at 1. 

Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 and end 
at j. We should select the next city in such a way that 

C(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)wherei∈Sandi

≠jC(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)wherei∈Sandi≠j 

Algorithm: Traveling-Salesman-Problem  

C ({1}, 1) = 0  

for s = 2 to n do  

   for all subsets S Є {1, 2, 3, … , n} of size s and containing 1  

      C (S, 1) = ∞  

   for all j Є S and j ≠ 1  

      C (S, j) = min {C (S – {j}, i) + d(i, j) for i Є S and i ≠ j}  

Return minj C ({1, 2, 3, …, n}, j) + d(j, i)  



Analysis 

There are at the most 2n.n2n.n sub-problems and each one takes linear time to solve. 

Therefore, the total running time is O(2n.n2)O(2n.n2). 

Example 

In the following example, we will illustrate the steps to solve the travelling salesman 
problem. 

 

From the above graph, the following table is prepared. 

 
1 2 3 4 

1 0 10 15 20 

2 5 0 9 10 

3 6 13 0 12 

4 8 8 9 0 

S = Φ 
Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5Cost(2,Φ,1)=d(2,1)=5 

Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6Cost(3,Φ,1)=d(3,1)=6 

Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8Cost(4,Φ,1)=d(4,1)=8 



S = 1 

Cost(i,s)=min{Cost(j,s–(j))+d[i,j]}Cost(i,s)=min{Cost(j,s)−(j))+d[i,j]}Cost(i,s)=min{Cost(j,s–

(j))+d[i,j]}Cost(i,s)=min{Cost(j,s)−(j))+d[i,j]} 

Cost(2,{3},1)=d[2,3]+Cost(3,Φ,1)=9+6=15cost(2,{3},1)=d[2,3]+cost(3,Φ,1)=9+6=15Cost(2,{3},1)=d

[2,3]+Cost(3,Φ,1)=9+6=15cost(2,{3},1)=d[2,3]+cost(3,Φ,1)=9+6=15 

Cost(2,{4},1)=d[2,4]+Cost(4,Φ,1)=10+8=18cost(2,{4},1)=d[2,4]+cost(4,Φ,1)=10+8=18Cost(2,{4},1)

=d[2,4]+Cost(4,Φ,1)=10+8=18cost(2,{4},1)=d[2,4]+cost(4,Φ,1)=10+8=18 

Cost(3,{2},1)=d[3,2]+Cost(2,Φ,1)=13+5=18cost(3,{2},1)=d[3,2]+cost(2,Φ,1)=13+5=18Cost(3,{2},1)

=d[3,2]+Cost(2,Φ,1)=13+5=18cost(3,{2},1)=d[3,2]+cost(2,Φ,1)=13+5=18 

Cost(3,{4},1)=d[3,4]+Cost(4,Φ,1)=12+8=20cost(3,{4},1)=d[3,4]+cost(4,Φ,1)=12+8=20Cost(3,{4},1)

=d[3,4]+Cost(4,Φ,1)=12+8=20cost(3,{4},1)=d[3,4]+cost(4,Φ,1)=12+8=20 

Cost(4,{3},1)=d[4,3]+Cost(3,Φ,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,Φ,1)=9+6=15Cost(4,{3},1)=d

[4,3]+Cost(3,Φ,1)=9+6=15cost(4,{3},1)=d[4,3]+cost(3,Φ,1)=9+6=15 

Cost(4,{2},1)=d[4,2]+Cost(2,Φ,1)=8+5=13cost(4,{2},1)=d[4,2]+cost(2,Φ,1)=8+5=13Cost(4,{2},1)=d

[4,2]+Cost(2,Φ,1)=8+5=13cost(4,{2},1)=d[4,2]+cost(2,Φ,1)=8+5=13 

S = 2 

Cost(2,{3,4},1) 

=d[2,3]+Cost(3,{4},1)=9+20=29 

d[2,4]+Cost(4,{3},1)=10+15=25=25 

{d[2,3]+cost(3,{4},1)=9+20=29d[2,4]+Cost(4,{3},1)=10+15=25=25 

 

 

 

Cost(3,{2,4},1)=d[3,2]+Cost(2,{4},1)=13+18=31 

d[3,4]+Cost(4,{2},1)=12+13=25=25Cost(3,{2,4},1){d[3,2]+cost(2,{4},1)=13+18=31 

\d[3,4]+Cost(4,{2},1)=12+13=25=25 

 

Cost(4,{2,3},1)=⎧⎩⎨d[4,2]+Cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+18=27=23Cost(4,{2

,3},1){d[4,2]+cost(2,{3},1)=8+15=23d[4,3]+Cost(3,{2},1)=9+18=27=23 

 

 

 

 



The minimum cost path is 35. 

Start from cost {1, {2, 3, 4}, 1}, we get the minimum value for d [1, 2]. When s = 3, select 
the path from 1 to 2 (cost is 10) then go backwards. When s = 2, we get the minimum 
value for d [4, 2]. Select the path from 2 to 4 (cost is 10) then go backwards. 

When s = 1, we get the minimum value for d [4, 3]. Selecting path 4 to 3 (cost is 9), then 
we shall go to then go to s = Φ step. We get the minimum value for d [3, 1] (cost is 6). 

 

 

Branch and bound •  

Technique for solving mixed (or pure) integer programming problems, based on tree search – 

Yes/no or 0/1 decision variables, designated xi – Problem may have continuous, usually linear, 

variables – O(2n) complexity  

• Relies on upper and lower bounds to limit the number of combinations examined while looking 

for a solution 

 • Dominance at a distance – Solutions in one part of tree can dominate other parts of tree – DP 

only has local dominance: dominance: states in same stage dominate dominate 

 • Handles master/subproblem framework better than DP  

• Same problem size as dynamic programming, perhaps a little larger: data specific, a few hundred 

0/1 variables – Branch-and-cut is a more sophisticated, related method  

• May solve problems with a few thousand 0/1 variables  

• Its code and math are complex  

• If you need branch-and-cut, use a commercial solver 

 

Backtracking is a general algorithm for finding all (or some) solutions to some computational 

problems, notably constraint satisfaction problems, that incrementally builds candidates to the 

solutions, and abandons a candidate ("backtracks") as soon as it determines that the candidate cannot 

possibly be completed to a valid solution 

example of the use of backtracking is the eight queens puzzle, that asks for all arrangements of 

eight chess queens on a standard chessboard so that no queen attacks any other. In the common 

backtracking approach, the partial candidates are arrangements of k queens in the first k rows of the 

board, all in different rows and columns. Any partial solution that contains two mutually attacking 

queens can be abandoned. 

bin packing problem:, items of different volumes must be packed into a finite number of bins or 
containers each of a fixed given volume in a way that minimizes the number of bins used. 
In computational complexity theory, it is a combinatorial NP-hard problem.[1] The decision 
problem (deciding if items will fit into a specified number of bins) is NP-complete.[2] 
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There are many variations of this problem, such as 2D packing, linear packing, packing by weight, 
packing by cost, and so on. They have many applications, such as filling up containers, loading 
trucks with weight capacity constraints, creating file backups in media and technology mapping 
in field-programmable gate array semiconductor chip design. 

The bin packing problem can also be seen as a special case of the cutting stock problem. When the 
number of bins is restricted to 1 and each item is characterised by both a volume and a value, the 
problem of maximising the value of items that can fit in the bin is known as the knapsack problem. 

 

 

knapsack problem is a problem in combinatorial optimization: Given a set of items, each 

with a weight and a value, determine the number of each item to include in a collection so that the total 

weight is less than or equal to a given limit and the total value is as large as possible. It derives its 

name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill 

it with the most valuable items. The problem often arises in resource allocation where the decision 

makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time 

constraint,  

0-1 Knapsack Problem | DP-10 

Given weights and values of n items, put these items in a knapsack of capacity W to get 
the maximum total value in the knapsack. In other words, given two integer arrays 
val[0..n-1] and wt[0..n-1] which represent values and weights associated with n items 
respectively. Also given an integer W which represents knapsack capacity, find out the 
maximum value subset of val[] such that sum of the weights of this subset is smaller 
than or equal to W. You cannot break an item, either pick the complete item, or don’t 
pick it (0-1 property). 
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 heuristic algorithm is one that is designed to solve a problem in a faster and more efficient 

fashion than traditional methods by sacrificing optimality, accuracy, precision, or completeness for speed. 

Heuristic algorithms often times used to solve NP-complete problems, a class of decision problems. In these 

problems, there is no known efficient way to find a solution quickly and accurately although solutions can be 

verified when given. Heuristics can produce a solution individually or be used to provide a good baseline and are 

supplemented with optimization algorithms. Heuristic algorithms are most often employed when approximate 

solutions are sufficient and exact solutions are necessarily computationally expensive. 

Understanding Heuristics 
Digital technology has disrupted all industries including finance, retail, media, and 
transportation. Suddenly, once typical daily activities have become outdated. 
Checks are deposited to bank accounts without visiting a local branch, products 
and services are purchased online and take-out food is delivered by food service 
delivery apps. Technology is creating data, which is increasingly shared across 
multiple industries and sectors, and a professional in any industry may find 
themselves working with mounds of complex data to solve a problem. Heuristic 
methods can help with data complexity given limited time and resources. 

Why Use Heuristics? 
Heuristics facilitate timely decisions. Analysts in every industry use rules of 
thumb such as intelligent guesswork, trial and error, process of elimination, past 
formulas and the analysis of historical data to solve a problem. Heuristic methods 
make decision making simpler and faster through short cuts and good-enough 
calculations. 

The Disadvantages of Using Heuristics 
There are trade-offs with the use of heuristics that render the approach prone to 
bias and errors in judgment. The user’s final decision may not be the optimal or 
best solution, the decision made may be inaccurate and the data selected might 
be insufficient leading to an imprecise solution to a problem. For example, 
copycat investors often imitate the investment pattern of successful investment 
managers to avoid researching securities and the 
associated quantitative and qualitative information on their own. 

By using a heuristic approach underlying past performance, copycat investors 
hope that the formulas used by these managers will continually earn them profits, 
but this is not always the case. For example, the crash of Valeant 
Pharmaceutical International was a shock to investors when the company saw its 
stock plunge 90% from 2015 to 2016. Valeant was a stock held in the portfolios 
of many hedge fund managers and the investors copying them. 

Representativeness Heuristics 
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A popular shortcut method in problem-solving is Representativeness Heuristics. 
Representativeness uses mental shortcuts to make decisions based on past 
events or traits that are representative of or similar to the current situation. Say, 
for example, Fast Food ABC expanded its operations to India and its stock price 
soared. An analyst noted that India is a profitable venture for all fast food chains. 
Therefore, when Fast Food XYZ announced its plan to explore the Indian market 
the following year, the analyst wasted no time in giving XYZ a “buy” 
recommendation. 

Although his shortcut approach saved reviewing data for both companies, it may 
not have been the best decision. XYZ may have food that is not appealing to 
Indian consumers, which research would have revealed. Other prevalent 
heuristic approaches for decision-making and problem-solving include Availability 
Bias, Anchoring and Adjustment, Familiarity Heuristic, Hindsight Bias and 
Naïve Diversification. 

Module-3 

Graph and tree are the non-linear data structure which is used to solve various 
complex problems. A graph is a group of vertices and edges where an edge connects a 
pair of vertices whereas a tree is considered as a minimally connected graph which 
must be connected and free from loops. 

Difference between graph and tree 

Graph : 
A graph is collection of two sets V and E where V is a finite non-empty set of vertices 
and E is a finite non-empty set of edges. 
• Vertices are nothing but the nodes in the graph. 
• Two adjacent vertices are joined by edges. 
• Any graph is denoted as G = {V, E}. 

For Example: 
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G = {{V1, V2, V3, V4, V5, V6}, {E1, E2, E3, E4, E5, E6, E7}} 
Tree : 
A tree is a finite set of one or more nodes such that – 

1. There is a specially designated node called root. 
2. The remaining nodes are partitioned into n>=0 disjoint sets T1, T2, T3, …, Tn 

where T1, T2, T3, …, Tn is called the subtrees of the root. 

The concept of tree is represented by following Fig. 

 

Difference between graph and tree 

Graph : 
A graph is collection of two sets V and E where V is a finite non-empty set of vertices 
and E is a finite non-empty set of edges. 
• Vertices are nothing but the nodes in the graph. 
• Two adjacent vertices are joined by edges. 
• Any graph is denoted as G = {V, E}. 
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For Example:   

 

 

 

 

 

G = {{V1, V2, V3, V4, V5, V6}, {E1, E2, E3, E4, E5, E6, E7}} 

Tree : 
A tree is a finite set of one or more nodes such that – 

1. There is a specially designated node called root. 
2. The remaining nodes are partitioned into n>=0 disjoint sets T1, T2, T3, …, Tn 

where T1, T2, T3, …, Tn is called the subtrees of the root. 

The concept of tree is represented by following Fig. 
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Trees are graphs that do not contain even a single cycle. They represent hierarchical 
structure in a graphical form. Trees belong to the simplest class of graphs. Despite their 
simplicity, they have a rich structure. 

Trees provide a range of useful applications as simple as a family tree to as complex as 
trees in data structures of computer science. 

Tree 

A connected acyclic graph is called a tree. In other words, a connected graph with no 
cycles is called a tree. 

The edges of a tree are known as branches. Elements of trees are called their nodes. 
The nodes without child nodes are called leaf nodes. 

A tree with ‘n’ vertices has ‘n-1’ edges. If it has one more edge extra than ‘n-1’, then the 
extra edge should obviously has to pair up with two vertices which leads to form a cycle. 
Then, it becomes a cyclic graph which is a violation for the tree graph. 

Example 1 

The graph shown here is a tree because it has no cycles and it is connected. It has four 
vertices and three edges, i.e., for ‘n’ vertices ‘n-1’ edges as mentioned in the definition. 

 

Note − Every tree has at least two vertices of degree one. 

Example 2 

 

In the above example, the vertices ‘a’ and ‘d’ has degree one. And the other two vertices 
‘b’ and ‘c’ has degree two. This is possible because for not forming a cycle, there should 
be at least two single edges anywhere in the graph. It is nothing but two edges with a 
degree of one. 

Spanning Trees 



Let G be a connected graph, then the sub-graph H of G is called a spanning tree of G if 
− 

• H is a tree 

• H contains all vertices of G. 

A spanning tree T of an undirected graph G is a subgraph that includes all of the vertices 
of G. 

Example 

 

In the above example, G is a connected graph and H is a sub-graph of G. 

Clearly, the graph H has no cycles, it is a tree with six edges which is one less than the 
total number of vertices. Hence H is the Spanning tree of  

Graph theory connectivity:- 

Whether it is possible to traverse a graph from one vertex to another is determined by 
how a graph is connected. Connectivity is a basic concept in Graph Theory. 
Connectivity defines whether a graph is connected or disconnected. It has subtopics 
based on edge and vertex, known as edge connectivity and vertex connectivity. Let us 
discuss them in detail. 

Connectivity 

A graph is said to be connected if there is a path between every pair of vertex. From 
every vertex to any other vertex, there should be some path to traverse. That is called 
the connectivity of a graph. A graph with multiple disconnected vertices and edges is 
said to be disconnected. 

Example 1 



In the following graph, it is possible to travel from one vertex to any other vertex. For 
example, one can traverse from vertex ‘a’ to vertex ‘e’ using the path ‘a-b-e’. 

 

Example 2 

In the following example, traversing from vertex ‘a’ to vertex ‘f’ is not possible because 
there is no path between them directly or indirectly. Hence it is a disconnected graph. 

 

 

Tree Traversals (Inorder, Preorder and Postorder) 

Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only 
one logical way to traverse them, trees can be traversed in different ways. Following are 
the generally used ways for traversing trees. 



 

Example Tree 

Depth First Traversals: 
(a) Inorder (Left, Root, Right) : 4 2 5 1 3 
(b) Preorder (Root, Left, Right) : 1 2 4 5 3 
(c) Postorder (Left, Right, Root) : 4 5 2 3 1 

Breadth First or Level Order Traversal : 1 2 3 4 5 
Please see this post for Breadth First Traversal. 

 

 

Inorder Traversal (Practice): 
Algorithm Inorder(tree) 

   1. Traverse the left subtree, i.e., call Inorder(left-subtree) 

   2. Visit the root. 

   3. Traverse the right subtree, i.e., call Inorder(right-subtree) 

Uses of Inorder 
In case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing 
order. To get nodes of BST in non-increasing order, a variation of Inorder traversal 
where Inorder traversal s reversed can be used. 
Example: Inorder traversal for the above-given figure is 4 2 5 1 3. 

 
Preorder Traversal (Practice): 
Algorithm Preorder(tree) 

   1. Visit the root. 

   2. Traverse the left subtree, i.e., call Preorder(left-subtree) 

   3. Traverse the right subtree, i.e., call Preorder(right-subtree) 

 

Tree Traversal Algorithms can be classified broadly in the 
following two categories by the order in which the nodes are 
visited: 
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• Depth-First Search (DFS) Algorithm: It starts with the 
root node and first visits all nodes of one branch as deep as 
possible of the chosen Node and before backtracking, it visits 
all other branches in a similar fashion. There are three sub-
types under this, which we will cover in this article. 

 
• Depth First Traversal (or Search) for a graph is similar to Depth First Traversal of 

a tree. The only catch here is, unlike trees, graphs may contain cycles, so we 
may come to the same node again. To avoid processing a node more than once, 
we use a boolean visited array. 

• For example, in the following graph, we start traversal from vertex 2. When we 
come to vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent 
vertex of 0. If we don’t mark visited vertices, then 2 will be processed again and it 
will become a non-terminating process. A Depth First Traversal of the following 
graph is 2, 0, 1, 3. 

•  

 

• Breadth-First Search (BFS) Algorithm: It also starts 
from the root node and visits all nodes of current depth before 
moving to the next depth in the tree. We will cover one 
algorithm of BFS type in the upcoming section. 

Breadth First Traversal (or Search) for a graph is similar to Breadth First Traversal of a 
tree (See method 2 of this post). The only catch here is, unlike trees, graphs may 
contain cycles, so we may come to the same node again. To avoid processing a node 
more than once, we use a boolean visited array. For simplicity, it is assumed that all 
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vertices are reachable from the starting vertex. 
For example, in the following graph, we start traversal from vertex 2. When we come to 
vertex 0, we look for all adjacent vertices of it. 2 is also an adjacent vertex of 0. If we 
don’t mark visited vertices, then 2 will be processed again and it will become a non-
terminating process. A Breadth First Traversal of the following graph is 2, 0, 3, 1. 

 
 

Shortest Path Algorithms 

The shortest path problem is about finding a path between 2 vertices in a graph such that the total 
sum of the edges weights is minimum. 

This problem could be solved easily using (BFS) if all edge weights were (1), but here weights can 
take any value. Three different algorithms are discussed below depending on the use-case. 

Bellman Ford's Algorithm: 

Bellman Ford's algorithm is used to find the shortest paths from the source vertex to all other 
vertices in a weighted graph. It depends on the following concept: Shortest path contains at 
most n−1 edges, because the shortest path couldn't have a cycle. 

Algorithm Steps: 

• The outer loop traverses from 0 : n−1. 
• Loop over all edges, check if the next node distance > current node distance + edge weight, 

in this case update the next node distance to "current node distance + edge weight". 

This algorithm depends on the relaxation principle where the shortest distance for all vertices is 
gradually replaced by more accurate values until eventually reaching the optimum solution. In the 
beginning all vertices have a distance of "Infinity", but only the distance of the source vertex = 0, 
then update all the connected vertices with the new distances (source vertex distance + edge 
weights), then apply the same concept for the new vertices with new distances and so on. 

Time Complexity of Bellman Ford algorithm is relatively high O(V⋅E), in case E=V2, O(E3). 
Let's discuss an optimized algorithm. 

Dijkstra's Algorithm 



Dijkstra's algorithm has many variants but the most common one is to find the shortest paths from 
the source vertex to all other vertices in the graph. 

Algorithm Steps: 

• Set all vertices distances = infinity except for the source vertex, set the source distance = 0. 
• Push the source vertex in a min-priority queue in the form (distance , vertex), as the 

comparison in the min-priority queue will be according to vertices distances. 
• Pop the vertex with the minimum distance from the priority queue (at first the popped vertex 

= source). 
• Update the distances of the connected vertices to the popped vertex in case of "current 

vertex distance + edge weight < next vertex distance", then push the vertex 
with the new distance to the priority queue. 

• If the popped vertex is visited before, just continue without using it. 
• Apply the same algorithm again until the priority queue is empty. 

Time Complexity of Dijkstra's Algorithm is O(V2) but with min-priority queue it drops down 
to O(V+ElogV). 

Floyd–Warshall's Algorithm 

Floyd–Warshall's Algorithm is used to find the shortest paths between between all pairs of vertices in 
a graph, where each edge in the graph has a weight which is positive or negative. The biggest 
advantage of using this algorithm is that all the shortest distances between any 2 vertices could be 
calculated in O(V3), where V is the number of vertices in a graph. 

The Algorithm Steps: 

For a graph with N vertices: 

• Initialize the shortest paths between any 2 vertices with Infinity. 
• Find all pair shortest paths that use 0 intermediate vertices, then find the shortest paths that 

use 1 intermediate vertex and so on.. until using all N vertices as intermediate nodes. 
• Minimize the shortest paths between any 2 pairs in the previous operation. 
• For any 2 vertices (i,j) , one should actually minimize the distances between this pair using 

the first K nodes, so the shortest path will be: min(dist[i][k]+dist[k][j],dist[i][j]). 

dist[i][k] represents the shortest path that only uses the first K vertices, dist[k][j] represents the 
shortest path between the pair k,j. As the shortest path will be a concatenation of the shortest path 
from i to k, then from k to j. 

Transitive closure of a graph 

Given a directed graph, find out if a vertex j is reachable from another vertex i for all 
vertex pairs (i, j) in the given graph. Here reachable mean that there is a path from 
vertex i to j. The reach-ability matrix is called transitive closure of a graph. 

For example, consider below graph 



\ 
 

Minimum Spanning Tree 

What is a Spanning Tree? 

Given an undirected and connected graph G=(V,E), a spanning tree of the graph G is a tree that 
spans G (that is, it includes every vertex of G) and is a subgraph of G (every edge in the tree 
belongs to G) 

What is a Minimum Spanning Tree? 

The cost of the spanning tree is the sum of the weights of all the edges in the tree. There can be 
many spanning trees. Minimum spanning tree is the spanning tree where the cost is minimum 
among all the spanning trees. There also can be many minimum spanning trees. 

Minimum spanning tree has direct application in the design of networks. It is used in algorithms 
approximating the travelling salesman problem, multi-terminal minimum cut problem and minimum-
cost weighted perfect matching. Other practical applications are: 

1. Cluster Analysis 
2. Handwriting recognition 
3. Image segmentation 



 

There are two famous algorithms for finding the Minimum Spanning Tree: 

Kruskal’s Algorithm 

Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing spanning 
tree. Kruskal's algorithm follows greedy approach as in each iteration it finds an edge which has 
least weight and add it to the growing spanning tree. 

Algorithm Steps: 

• Sort the graph edges with respect to their weights. 
• Start adding edges to the MST from the edge with the smallest weight until the edge of the 

largest weight. 
• Only add edges which doesn't form a cycle , edges which connect only disconnected 

components. 

So now the question is how to check if 2 vertices are connected or not ? 

This could be done using DFS which starts from the first vertex, then check if the second vertex is 
visited or not. But DFS will make time complexity large as it has an order of O(V+E) where V is the 
number of vertices, E is the number of edges. So the best solution is "Disjoint Sets": 
Disjoint sets are sets whose intersection is the empty set so it means that they don't have any 
element in common. 

Consider following example: 



 

In Kruskal’s algorithm, at each iteration we will select the edge with the lowest weight. So, we will 
start with the lowest weighted edge first i.e., the edges with weight 1. After that we will select the 
second lowest weighted edge i.e., edge with weight 2. Notice these two edges are totally disjoint. 
Now, the next edge will be the third lowest weighted edge i.e., edge with weight 3, which connects 
the two disjoint pieces of the graph. Now, we are not allowed to pick the edge with weight 4, that will 
create a cycle and we can’t have any cycles. So we will select the fifth lowest weighted edge i.e., 



edge with weight 5. Now the other two edges will create cycles so we will ignore them. In the end, 
we end up with a minimum spanning tree with total cost 11 ( = 1 + 2 + 3 + 5). 

Implementation: 

#include <iostream> 

#include <vector> 

#include <utility> 

#include <algorithm> 

 

using namespace std; 

const int MAX = 1e4 + 5; 

int id[MAX], nodes, edges; 

pair <long long, pair<int, int> > p[MAX]; 

 

void initialize() 

{ 

    for(int i = 0;i < MAX;++i) 

        id[i] = i; 

} 

 

int root(int x) 

{ 

    while(id[x] != x) 

    { 

        id[x] = id[id[x]]; 

        x = id[x]; 

    } 

    return x; 

} 

 

void union1(int x, int y) 

{ 

    int p = root(x); 

    int q = root(y); 

    id[p] = id[q]; 

} 

 

long long kruskal(pair<long long, pair<int, int> > p[]) 

{ 

    int x, y; 

    long long cost, minimumCost = 0; 

    for(int i = 0;i < edges;++i) 

    { 

        // Selecting edges one by one in increasing order from the beginning 

        x = p[i].second.first; 

        y = p[i].second.second; 

        cost = p[i].first; 

        // Check if the selected edge is creating a cycle or not 

        if(root(x) != root(y)) 

        { 

            minimumCost += cost; 

            union1(x, y); 

        }     

    } 



    return minimumCost; 

} 

 

int main() 

{ 

    int x, y; 

    long long weight, cost, minimumCost; 

    initialize(); 

    cin >> nodes >> edges; 

    for(int i = 0;i < edges;++i) 

    { 

        cin >> x >> y >> weight; 

        p[i] = make_pair(weight, make_pair(x, y)); 

    } 

    // Sort the edges in the ascending order 

    sort(p, p + edges); 

    minimumCost = kruskal(p); 

    cout << minimumCost << endl; 

    return 0; 

} 

 

Time Complexity: 
In Kruskal’s algorithm, most time consuming operation is sorting because the total complexity of the 
Disjoint-Set operations will be O(ElogV), which is the overall Time Complexity of the algorithm. 

Prim’s Algorithm 

Prim’s Algorithm also use Greedy approach to find the minimum spanning tree. In Prim’s Algorithm 
we grow the spanning tree from a starting position. Unlike an edge in Kruskal's, we add vertex to 
the growing spanning tree in Prim's. 

Algorithm Steps: 

• Maintain two disjoint sets of vertices. One containing vertices that are in the growing 
spanning tree and other that are not in the growing spanning tree. 

• Select the cheapest vertex that is connected to the growing spanning tree and is not in the 
growing spanning tree and add it into the growing spanning tree. This can be done using 
Priority Queues. Insert the vertices, that are connected to growing spanning tree, into the 
Priority Queue. 

• Check for cycles. To do that, mark the nodes which have been already selected and insert 
only those nodes in the Priority Queue that are not marked. 

Consider the example below: 



 

In Prim’s Algorithm, we will start with an arbitrary node (it doesn’t matter which one) and mark it. In 
each iteration we will mark a new vertex that is adjacent to the one that we have already marked. As 
a greedy algorithm, Prim’s algorithm will select the cheapest edge and mark the vertex. So we will 
simply choose the edge with weight 1. In the next iteration we have three options, edges with weight 
2, 3 and 4. So, we will select the edge with weight 2 and mark the vertex. Now again we have three 
options, edges with weight 3, 4 and 5. But we can’t choose edge with weight 3 as it is creating a 
cycle. So we will select the edge with weight 4 and we end up with the minimum spanning tree of 
total cost 7 ( = 1 + 2 +4). 

Implementation: 

#include <iostream> 

#include <vector> 

#include <queue> 

#include <functional> 

#include <utility> 

 

using namespace std; 



const int MAX = 1e4 + 5; 

typedef pair<long long, int> PII; 

bool marked[MAX]; 

vector <PII> adj[MAX]; 

 

long long prim(int x) 

{ 

    priority_queue<PII, vector<PII>, greater<PII> > Q; 

    int y; 

    long long minimumCost = 0; 

    PII p; 

    Q.push(make_pair(0, x)); 

    while(!Q.empty()) 

    { 

        // Select the edge with minimum weight 

        p = Q.top(); 

        Q.pop(); 

        x = p.second; 

        // Checking for cycle 

        if(marked[x] == true) 

            continue; 

        minimumCost += p.first; 

        marked[x] = true; 

        for(int i = 0;i < adj[x].size();++i) 

        { 

            y = adj[x][i].second; 

            if(marked[y] == false) 

                Q.push(adj[x][i]); 

        } 

    } 

    return minimumCost; 

} 

 

int main() 

{ 

    int nodes, edges, x, y; 

    long long weight, minimumCost; 

    cin >> nodes >> edges; 

    for(int i = 0;i < edges;++i) 

    { 

        cin >> x >> y >> weight; 

        adj[x].push_back(make_pair(weight, y)); 

        adj[y].push_back(make_pair(weight, x)); 

    } 

    // Selecting 1 as the starting node 

    minimumCost = prim(1); 

    cout << minimumCost << endl; 

    return 0; 

} 

 

Time Complexity: 
The time complexity of the Prim’s Algorithm is O((V+E)logV) because each vertex is inserted in the 
priority queue only once and insertion in priority queue take logarithmic time. 



Topological sorting 

 topological sort or topological ordering of a directed graph is a linear ordering of its vertices such 
that for every directed edge uv from vertex u to vertex v, u comes before v in the ordering. For 
instance, the vertices of the graph may represent tasks to be performed, and the edges may 
represent constraints that one task must be performed before another; in this application, a 
topological ordering is just a valid sequence for the tasks. A topological ordering is possible if and 
only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has 
at least one topological ordering, and algorithms are known for constructing a topological ordering of 
any DAG in linear time. 

Example 

 

The graph shown to the left has many valid topological sorts, including: 

• 5, 7, 3, 11, 8, 2, 9, 10 (visual left-to-right, top-to-bottom) 

• 3, 5, 7, 8, 11, 2, 9, 10 (smallest-numbered available vertex first) 

• 5, 7, 3, 8, 11, 10, 9, 2 (fewest edges first) 

• 7, 5, 11, 3, 10, 8, 9, 2 (largest-numbered available vertex first) 

• 5, 7, 11, 2, 3, 8, 9, 10 (attempting top-to-bottom, left-to-right) 

• 3, 7, 8, 5, 11, 10, 2, 9 (arbitrary) 

Module 4 

Computable and non-computable problem 

Computable Problems – 
You are familiar with many problems (or functions) that are computable (or decidable), 
meaning there exists some algorithm that computes an answer (or output) to any 
instance of the problem (or for any input to the function) in a finite number of simple 
steps.A simple example is the integer increment operation: 
f(x) = x + 1  

It should be intuitive that given any integer x, we can compute x + 1 in a finite number of 
steps. Since x is finite, it may be represented by a finite string of digits. Using the 
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addition method (or algorithm) we all learned in school, we can clearly compute another 
string of digits representing the integer equivalent to x + 1. 

Yet there are also problems and functions that that are non-computable (or undecidable 
or uncomputable), meaning that there exists no algorithm that can compute an answer 
or output for all inputs in a finite number of simple steps. (Undecidable simply means 
non-computable in the context of a decision problem, whose answer (or output) is either 
“true” or “false”). 

 

 

Non-Computable Problems – 
A non-computable is a problem for which there is no algorithm that can be used to solve 
it. Most famous example of a non-computablity (or undecidability) is the Halting 
Problem. Given a description of a Turing machine and its initial input, determine 
whether the program, when executed on this input, ever halts (completes). 
The alternative is that it runs forever without halting. The halting problem is about 
seeing if a machine will ever come to a halt when a certain input is given to it or if it will 
finish running. This input itself can be something that keeps calling itself forever which 
means that it will cause the program to run forever. 

Other example of an uncomputable problem is: determining whether a computer 
program loops forever on some input. You can replace “computer program” by “Turing 
machine or algorithm”if you know about Turing machine. 

 

P, NP-Complete, NP, and NP-Hard 

NP problems have their own significance in programming, but the discussion becomes quite hot 

when we deal with differences between NP, P , NP-Complete and NP-hard. 

P and NP- Many of us know the difference between them. 

P- Polynomial time solving . Problems which can be solved in polynomial time, which take time like 

O(n), O(n2), O(n3). Eg: finding maximum element in an array or to check whether a string is 

palindrome or not. so there are many problems which can be solved in polynomial time. 

NP- Non deterministic Polynomial time solving. Problem which can't be solved in polynomial time like 

TSP( travelling salesman problem) or An easy example of this is subset sum: given a set of 

numbers, does there exist a subset whose sum is zero?. 

but NP problems are checkable in polynomial time means that given a solution of a problem , we 

can check that whether the solution is correct or not in polynomial time. 

https://www.geeksforgeeks.org/turing-machine/


So till now you have got what is NP and what is P. 

Now we will discuss about NP-Complete and NP-hard. 

but first we need to know what is reducibility . 

Take two problems A and B both are NP problems. 

Reducibility- If we can convert one instance of a problem A into problem B (NP problem) then it 

means that A is reducible to B. 

NP-hard-- Now suppose we found that A is reducible to B, then it means that B is at least as hard as 

A. 

NP-Complete -- The group of problems which are both in NP and NP-hard are known as NP-

Complete problem. 

Now suppose we have a NP-Complete problem R and it is reducible to Q then Q is at least as hard 

as R and since R is an NP-hard problem. therefore Q will also be at least NP-hard , it may be NP-

complete also. 

 



Decision vs Optimization Problems 
NP-completeness applies to the realm of decision problems.  It was set up this way 
because it’s easier to compare the difficulty of decision problems than that of 
optimization problems.   In reality, though, being able to solve a decision problem in 
polynomial time will often permit us to solve the corresponding optimization problem in 
polynomial time (using a polynomial number of calls to the decision problem). So, 
discussing the difficulty of decision problems is often really equivalent to discussing the 
difficulty of optimization problems. (Source Ref 2). 
For example, consider the vertex cover problem (Given a graph, find out the minimum 
sized vertex set that covers all edges). It is an optimization problem. Corresponding 
decision problem is, given undirected graph G and k, is there a vertex cover of size k? 

What is Reduction? 
 
Let L1 and L2 be two decision problems. Suppose algorithm A2 solves L2. That is, if y is 
an input for L2 then algorithm A2 will answer Yes or No depending upon whether y 
belongs to L2 or not. 
The idea is to find a transformation from L1 to L2 so that the algorithm A2 can be part of 
an algorithm A1 to solve L1. 

 
 
 
 
 

 
Learning reduction in general is very important. For example, if we have library 
functions to solve certain problem and if we can reduce a new problem to one of the 
solved problems, we save a lot of time. Consider the example of a problem where we 
have to find minimum product path in a given directed graph where product of path is 
multiplication of weights of edges along the path. If we have code for Dijkstra’s 
algorithm to find shortest path, we can take log of all weights and use Dijkstra’s 
algorithm to find the minimum product path rather than writing a fresh code for this new 
problem. 

How to prove that a given problem is NP complete? 
From the definition of NP-complete, it appears impossible to prove that a problem L is 
NP-Complete.  By definition, it requires us to that show every problem in NP is 
polynomial time reducible to L.   Fortunately, there is an alternate way to prove it.   The 
idea is to take a known NP-Complete problem and reduce it to L.  If polynomial time 
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reduction is possible, we can prove that L is NP-Complete by transitivity of reduction (If 
a NP-Complete problem is reducible to L in polynomial time, then all problems are 
reducible to L in polynomial time). 
What was the first problem proved as NP-Complete? 
There must be some first NP-Complete problem proved by definition of NP-Complete 
problems.  SAT (Boolean satisfiability problem) is the first NP-Complete problem proved 
by Cook (See CLRS book for proof). 
It is always useful to know about NP-Completeness even for engineers. Suppose you 
are asked to write an efficient algorithm to solve an extremely important problem for 
your company. After a lot of thinking, you can only come up exponential time approach 
which is impractical. If you don’t know about NP-Completeness, you can only say that I 
could not come with an efficient algorithm. If you know about NP-Completeness and 
prove that the problem as NP-complete, you can proudly say that the polynomial time 
solution is unlikely to exist. If there is a polynomial time solution possible, then that 
solution solves a big problem of computer science many scientists have been trying for 
years. 

We will soon be discussing more NP-Complete problems and their proof for NP-
Completeness. 

 

 

 

Cook’s Theorem 
Stephen Cook presented four theorems in his paper “The Complexity of Theorem 
Proving Procedures”. These theorems are stated below. We do understand that many 
unknown terms are being used in this chapter, but we don’t have any scope to discuss 
everything in detail. 

Following are the four theorems by Stephen Cook − 

Theorem-1 

If a set S of strings is accepted by some non-deterministic Turing machine within 
polynomial time, then S is P-reducible to {DNF tautologies}. 

Theorem-2 

The following sets are P-reducible to each other in pairs (and hence each has the same 
polynomial degree of difficulty): {tautologies}, {DNF tautologies}, D3, {sub-graph pairs}. 

http://en.wikipedia.org/wiki/Boolean_satisfiability_problem


Theorem-3 

• For any TQ(k) of type Q, TQ(k)k√(logk)2TQ(k)k(logk)2 is unbounded 

• There is a TQ(k) of type Q such that TQ(k)⩽2k(logk)2TQ(k)⩽2k(logk)2 

Theorem-4 

If the set S of strings is accepted by a non-deterministic machine within time T(n) = 2n, 
and if TQ(k) is an honest (i.e. real-time countable) function of type Q, then there is a 
constant K, so S can be recognized by a deterministic machine within time TQ(K8n). 

• First, he emphasized the significance of polynomial time reducibility. It means that if we have 
a polynomial time reduction from one problem to another, this ensures that any polynomial 
time algorithm from the second problem can be converted into a corresponding polynomial 
time algorithm for the first problem. 

• Second, he focused attention on the class NP of decision problems that can be solved in 
polynomial time by a non-deterministic computer. Most of the intractable problems belong to 
this class, NP. 

• Third, he proved that one particular problem in NP has the property that every other problem 
in NP can be polynomially reduced to it. If the satisfiability problem can be solved with a 
polynomial time algorithm, then every problem in NP can also be solved in polynomial time. 
If any problem in NP is intractable, then satisfiability problem must be intractable. Thus, 
satisfiability problem is the hardest problem in NP. 

• Fourth, Cook suggested that other problems in NP might share with the satisfiability problem 
this property of being the hardest member of NP. 

Definition of NP-Completeness 

A language B is NP-complete if it satisfies two conditions 

• B is in NP 

• Every A in NP is polynomial time reducible to B. 

If a language satisfies the second property, but not necessarily the first one, the 
language B is known as NP-Hard. Informally, a search problem B is NP-Hard if there 
exists some NP-Complete problem A that Turing reduces to B. 

The problem in NP-Hard cannot be solved in polynomial time, until P = NP. If a problem 
is proved to be NPC, there is no need to waste time on trying to find an efficient algorithm 
for it. Instead, we can focus on design approximation algorithm. 

NP-Complete Problems 

Following are some NP-Complete problems, for which no polynomial time algorithm is 
known. 



• Determining whether a graph has a Hamiltonian cycle 

• Determining whether a Boolean formula is satisfiable, etc. 

NP-Hard Problems 

The following problems are NP-Hard 

• The circuit-satisfiability problem 

• Set Cover 

• Vertex Cover 

• Travelling Salesman Problem 

In this context, now we will discuss TSP is NP-Complete 

1. clique problem is the computational problem of finding cliques (subsets of 
vertices, all adjacent to each other, also called complete subgraphs) in a graph. It 
has several different formulations depending on which cliques, and what 
information about the cliques, should be found. 

MODULE-5 

next →← prev 

Approximate Algorithms 

Introduction: 

An Approximate Algorithm is a way of approach NP-COMPLETENESS for the 

optimization problem. This technique does not guarantee the best solution. The goal of 

an approximation algorithm is to come as close as possible to the optimum value in a 

reasonable amount of time which is at the most polynomial time. Such algorithms are 

called approximation algorithm or heuristic algorithm. 

o For the traveling salesperson problem, the optimization problem is to find the 

shortest cycle, and the approximation problem is to find a short cycle. 

o For the vertex cover problem, the optimization problem is to find the vertex cover 

with fewest vertices, and the approximation problem is to find the vertex cover 

with few vertices. 

Performance Ratios 

https://www.javatpoint.com/daa-approximation-algorithm-vertex-cover
https://www.javatpoint.com/daa-subset-sum-problem


Suppose we work on an optimization problem where every solution carries a cost. An 

Approximate Algorithm returns a legal solution, but the cost of that legal solution may 

not be optimal. 

      For Example, suppose we are considering for a minimum size vertex-cover (VC). 

An approximate algorithm returns a VC for us, but the size (cost) may not be minimized. 

      Another Example is we are considering for a maximum size Independent set 

(IS). An approximate Algorithm returns an IS for us, but the size (cost) may not be 

maximum. Let C be the cost of the solution returned by an approximate algorithm, and 

C* is the cost of the optimal solution. 

We say the approximate algorithm has an approximate ratio P (n) for an input size n, 

where 

 

Intuitively, the approximation ratio measures how bad the approximate solution is 

distinguished with the optimal solution. A large (small) approximation ratio measures the 

solution is much worse than (more or less the same as) an optimal solution. 

      Observe that P (n) is always ≥ 1, if the ratio does not depend on n, we may write P. 

Therefore, a 1-approximation algorithm gives an optimal solution. Some problems have 

polynomial-time approximation algorithm with small constant approximate ratios, while 

others have best-known polynomial time approximation algorithms whose approximate 

ratios grow with n. 

Travelling Salesman Problem 
 

Problem Statement 

A traveler needs to visit all the cities from a list, where distances between all the cities 
are known and each city should be visited just once. What is the shortest possible route 
that he visits each city exactly once and returns to the origin city? 

Solution 



Travelling salesman problem is the most notorious computational problem. We can use 
brute-force approach to evaluate every possible tour and select the best one. 
For n number of vertices in a graph, there are (n - 1)! number of possibilities. 

Instead of brute-force using dynamic programming approach, the solution can be 
obtained in lesser time, though there is no polynomial time algorithm. 

Let us consider a graph G = (V, E), where V is a set of cities and E is a set of weighted 
edges. An edge e(u, v) represents that vertices u and v are connected. Distance 
between vertex u and v is d(u, v), which should be non-negative. 

Suppose we have started at city 1 and after visiting some cities now we are in city j. 
Hence, this is a partial tour. We certainly need to know j, since this will determine which 
cities are most convenient to visit next. We also need to know all the cities visited so far, 
so that we don't repeat any of them. Hence, this is an appropriate sub-problem. 

For a subset of cities S Є {1, 2, 3, ... , n} that includes 1, and j Є S, let C(S, j) be the 
length of the shortest path visiting each node in S exactly once, starting at 1 and ending 
at j. 

When |S| > 1, we define C(S, 1) = ∝ since the path cannot start and end at 1. 

Now, let express C(S, j) in terms of smaller sub-problems. We need to start at 1 and end 
at j. We should select the next city in such a way that 

C(S,j)=minC(S−{j},i)+d(i,j)wherei∈Sandi≠jc(S,j)=minC(s−{j},i)+d(i,j)wherei∈Sandi

≠j 

 

Analysis 

There are at the most 2n.n2n.n sub-problems and each one takes linear time to solve. 

Therefore, the total running time is O(2n.n2)O(2n.n2). 

Randomized algorithms: 

Quick sort: Quick sort is a highly efficient sorting algorithm and is based on 

partitioning of array of data into smaller arrays. A large array is partitioned into two arrays 
one of which holds values smaller than the specified value, say pivot, based on which 
the partition is made and another array holds values greater than the pivot value. 

Quicksort partitions an array and then calls itself recursively twice to sort the two resulting 
subarrays. This algorithm is quite efficient for large-sized data sets as its average and 
worst-case complexity are O(nLogn) and image.png(n2), respectively. 

•  



•  

 

N Queen Problem 

This problem is to find an arrangement of N queens on a chess board, such that no queen 
can attack any other queens on the board. 

The chess queens can attack in any direction as horizontal, vertical, horizontal and 
diagonal way. 

A binary matrix is used to display the positions of N Queens, where no queens can attack 
other queens. 

Input and Output 
Input: 

The size of a chess board. Generally, it is 8. as (8 x 8 is the size of a 

normal chess board.) 

Output: 

The matrix that represents in which row and column the N Queens can be 

placed. 

If the solution does not exist, it will return false. 

 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 1 

0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 

 

In this output, the value 1 indicates the correct place for the queens. 

The 0 denotes the blank spaces on the chess board. 



Minimum cut 
In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph 
into two disjoint subsets) that is minimal in some sense. 

Variations of the minimum cut problem consider weighted graphs, directed graphs, terminals, and 
partitioning the vertices into more than two sets. 

 PSPACE-Complete 

PSPACE. Decision problems solvable in polynomial space.  

PSPACE-Complete. Problem Y is PSPACE-complete if (i) Y is in PSPACE and (ii) for every 

problem X in PSPACE, X ≤P Y. Theorem. [Stockmeyer-Meyer 1973] QSAT is PSPACE-

complete.  

Theorem. PSPACE ⊆ EXPTIME. 

 Pf. Previous algorithm solves QSAT in exponential time, and QSAT is PSPACE-complete.  

▪ Summary. P ⊆ NP ⊆ PSPACE ⊆ EXPTIME. it is known that P ≠ EXPTIME, but unknown 

which inclusion is strict; conjectured that all areInput 
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