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Similarly, SAn-1 = a +      

 

 

Zone Plate 

Let PQ be a zone plate .S is the point source of light and S’ is the point on the screen where a 

bright spot is observed due to the action of the zone plate.Light from the source S reaches the point 

s’through the nth and (n01)th zone of the zone plate through the paths SAS’ and SAn-1S’.Let r is the 

 
 

radius of the zone plate. 
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SAn= = a +     

   
 

 

andAnS’ = b +     

   
 

    
  

   
 

 

and An-1S’ = b + 
  
    

   

    



 

 

The path difference between the two rays reaching A and A n-1 can be calculated as 
 
 

SA S’ – S A S’ = 
    

        
   

n 
 

 
   

Or, 

n-1 
 
 
 

=   
    

        

 
   

This shows that the path difference between the half period zones ( ) can be written as a lens 

formula and the radii of the zone plate are directly proportional to the square root of the natural 

numbers. 

 

r1 = r      (radius of the 1st zone plate) 

r2 = r     (radius of the 2nd zone plate) 

r3 = r     (radius of the 3rd zone plate) 

rn = r (radius of the nth zone plate) 

This implies that the radius of a zone plate is proportional to the square root of natural number. 
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Plane of polarisation and plane of vibration of plane polarised light 

 
An ordinary light consists of large number of transverse waves where the the vibrating particles 

are transverse to the plane of propagation.There are two sets of vibrations i.e. one vibrates in one plane 

and the other at right angle to it.The vibrations in either case are considered to be distributed over all 

possible planes containing the ray, so that in polarised light ,if the vibrations are linear then it is known 

as plane polarised. If the vibrations are circular ,it is called circularly polarised and if the vibrations are 

elliptical ,the light is elliptically polarised.Circular and elliptical polarised lights are the result of two 

plane polarised lights having a phase difference of π/2. 

 

circularly polarised light from a beam of unpolarised light 

 
An unpolarised light can be decomposed into ordinary and extra ordinary rays with a phase difference 

between them. 

 

X= A cos θ sin (wt +δ) 



 

 

Y= A sin θ sin wt 

 
Taking A cos θ=a and A sin θ= b 

X= a sin (wt+δ) or , X/a = sin wtcosδ+coswtsinδ 1 

Y=b sin wt or, Y/b = sin wt 2 

From equations 1 &2 ,we will get 3 

Figure 

When δ = (2n+1)π/2, n=0,1,2,…………. 

 
Sin δ=1 and cos δ= 0 

Equation 3 will be reduced to 

X2+y2 = a2 for a=b which is equation to a circle of radius a implies that the emergent light is circularly 

polarised. 
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Plane diffraction grating 

 
Ans. A diffraction grating is a plane glass plate on which number of parallel, equidistant lines are drawn 

with the help of a diamond pen. The lined portion being opaque and the spacing between the lines are 

transparent to the incident light. A plane diffraction grating is the combined effect of N number of 

parallel slits. 

 

Let a plane wavefront of monochromatic light be incident normally on the grating. The width of each slit 

be c and the separation between any two consecutive slits be denoted as d. 

 

When a plane wavefront is incident normally on the grating, each point on the slit sends out secondary 

wavelets in all directions. The secondary wavelets in the same direction as of incident light will come to 

focus at o which is the point of central maximum.The secondary wavelets diffracted along a direction to 

meet the screen posses different phases. Therefore dark and bright bands are obtained on both sides of 

the central maximum. 



 

 

= A      

    
 

 

 
 

Let S1, S2,S3….. be the mid points of the corresponding slits and S1M1, S2M2 … be the 

perpendiculars drawn.The path difference between the waves emanating from points Sn-1 and Sn is 

 

SnMn-1 = (c+d) sinθ 

 
The corresponding phase difference is given by 

 

  
Φ = ( c+ d ) sin θ 

 
For single slit case, the amplitude at p is found to be 

A = A0 

The resultant of the waves coming from N number of slits is 

Y = A sin wt + A sin (wt + φ )+ A sin ( wt + 2φ)+……….. 

          
    

      

 

        

Intensity due to the resultant waves ( I )= A2
    

 

  

 

For principal maxima we have 

Φ = ± n π 

  
Or, ( c+ d ) sin θ = ± n π 

 
( c+ d ) sin θ = ± n λ 

In the diffraction pattern obtained by using plane diffraction grating and monochromatic light,few 

spectral lines are absent. 4 

The condition for the principal maxima for nth order spectrum for a plane diffraction grating is 

( a+ b) sin θ = nλ (1) 

And the condition for minima due to a single slit is 



 

 

a sin θ = m λ (2) 

 
Dividing equation (1) by equation (2) 

 

  
= 
  

 

When a = b, n=2m 

 
So 2nd,4th,6th…..orders of the spectra will be missing corresponding to the minima given by m=1,2,3 

If b=2a then n = 3m 

So that 3rd,6th,9th….orders of the spectra will be missing corresponding to the minimas given by m= 1,2,3 
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Differences among plain polarized,circularly polarised,elliptically polarised and unpolarised light. 

If the vibrations are along the direction of propagation of a polarised light, then it is 

known as plane polarised .We can get a plane polarised light by reflection, by transmission through a 

pile of plates, by double refraction, by selective absorbtion and by scattering.The intensity of the 

emergent light varies from maximum to minimum twice when it is passed through a nicol prism. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
figure 

 

When the vibrations are scattered in a circular form then it is known as a circularly polarised 

light.To detect a circularly polarised light, it is first passed through a quarter wave plate and then viewed 

through a rotating Nichol.Firstly it is converted into a plane polarised light by the quarter wave plate. 

Then it will show variation in intensity from maximum to zero minimum twice by passing through a 

Nichol prism. 

 

When the variation of the vibrating particles comes ain an elliptical form then it is known as 

aelliptically polarised light.If elliptically polarised light beam is passed through a rotating Nichol the 



 

 

intensity of emergent light varies from maximum to minimum.The minimum intensity never be zero.To 

detect elliptically polarised light, the beam is first passed through a rotating Nichol.In case the beam is 

elliptically polarised, it will be converted into plane one by quarter wave plate. Then the change in 

intensity will be observed by passing through a rotating Nichol. 

 

When a ray is incident at an angle 590 on a glass slab,refracted ray and reflected ray are found to 

be perpendicular to each other.Calculate the polarising angle and refractive index of the glass. 

 

Ii = 590 

 
Ip = 310 

 
Refractive index = tan-1(Ip) 
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Characteristics of a quantum mechanical wave function 

 
( i) The wave function has both real and imaginary parts.Hence it is complex in nature. 

 
(ii) The wave function is continuous and differential. 

 
(iii) The w.f. Ψ obeys the boundary conditions. 

 
(iv) The w.f .isnormalizable . 

 
(v) The mod square of the wave function represents the probability of finding a particle in a quantum 

mechanical system. 

 

Heisenberg’s uncertainty principle with an example: 

 
According to Heisenberg’s uncertainty principle, any pair of conjugate physical variables can 

not be measured accurately and simultaneously. Position & momentum; energy& time; angle and 

angular momentum are the main pair of physical variables. If momentum is specified ,clearly defined 

then the uncertainty lies with the position. Similarly energy & time can’t be measured simultaneously 

and accurately. Mathematically, 

 

∆x . ∆px ≈ ђ 

 
∆E . ∆t ≈ ђ 



 

 

∆θ. ∆Jz ≈ђ 

 
The most common example where Heisenberg’s uncertainty relation applied is the non existence of 

electron inside the nucleus. 

 

The diameter of a particle ≈ 2 fermi 

The uncertainty in momentum ≈ ђ/2 

   

The energy ≈ 
  

 

 
The energy of an electron is found to be more compared to the binding energy of the proton and netron 

inside the nucleus.So an electron can’t remain inside a nucleus. 
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Newton’’s interference pattern 

 
Newton’s interference occurs due to the superposition of two reflected or transmitted rays.There is a 

thin air film present in between the lower part of the plano convex lens and the upper part of the plane 

glass plate.The point of contact of the plane glass plate & plano convex lens acts as the centre of the ring 

pattern. 



 

 

  

  

  

 
 

Let the radius of the nth ring is OD = OC = rn as shown in the diagram.The thickness of the air film at D is 

t. In the figure two chords AA’and FO intersecting at O.Then 

AE . A’É = FE . OE 

Or, = (2R-t) .t 

 
R is the radius of curvature of the plano convex lens.Since for all practical purposes, t«R 

 
 
 

The path difference between the two rays ,one reflected from P and another from Q is 

 
=2 ηtcos r=2ηt since the incidence is normal here so r=0.As one of the rays travels from denser to rarer 

medium so an additional path difference of λ/2 is introduced.So total path difference is 2ηt+λ/2 

 

                 for bright rings 

 
          for dark rings 

 
By taking n=5, we can determine the diameter for the 5th ring both for bright and dark rings when the 

values of R & λ are given. 



 

 

Method to determine the wavelength of light using Newton’s rings. 

 
When a parallel rays of monochromatic light fall on a glass plate which is inclined at an angle 450 

to the incident rays,then the rays get reflected and transmitted to the plano convex lens placed on a 

plane glass plate.Interference occur btween the light rays getting reflected from the lower and upper 

portion of the air film placed in the space between the plano convex lens and the glass plate. 
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Similarities and dissimilarities between a zone plate and a convex lens. 3 

 
Zone plate and convex lens are used for both real as well as virtual images. 

b)Zone plate & convex lens are both optical devices. 

c) Zone plate is used in diffraction phenomena while convex lens in used in convergence 

phenomena. 

d) Both zone plate & convex lens used for lens formulae 

 
e) Zone plate has multiple foci compared to that of a convex lens. 

 
An expression for the angular width of the central maximum in a single slit Fraunhoffer diffraction 

pattern. 

 

Figure 
 
 

 
S is a source of monochromatic light.L is the converging lens.According to the Huygen’s theory, each 

point on the wavefront is asource of secondary disturbance and the secondary waves travelling along 

the distances XQ and YQ’meet at P, centre of the screen.The secondary waves from points equidistant 

from O and situated in the upper and lower half OX and OY of the wavefront travel the same distance in 

reaching at P.Hence the path difference between them is zero. Therefore at P ,a bright fringe is 

observed and the intensity is maximum. 



 

 

 

 
 

 

Let us consider the secondary waves travelling along the directions XR and YR’.This makes an 

angle θ with the central axis OP.All the secondary waves travelling in this direction will meet the screen 

at P’. 

 

Considering the tringle ∆XYL , sin θ = XL/XY=XL/a or, XL=a sin θ 

Where a is the width of the slit. Θ is the angle of diffraction. 

The whole wavefront is considered to be of two halves OX and Oy. The path difference between the 

secondary waves from X and O is λ/2.For every point in the upper half OX, there is a corresponding point 

in the lower half OY and the path difference between the secondary waves from these points is λ/2. 



 

 

The general condition for maximum intensity at point P on the screen is 

a sin θn = (2n+1) λ/2 

And the condition for minimum at P’point on the screen is 

a sin θn= nλ 

Thus the diffraction pattern due to a single slit consists of a central bright maximum at p followed by 

secondary maxima and minima on both sides of the central maxima. 

 

Width of the central maxima : 

 
Let the lens L2 is very near the slit or the screen is far from the lens.Then 

OP’ = focal length of the lens L2 = f 

From ∆OPP’ , sin θ= x/f 

 
Where x is the distance between the central maxima and first secondary minima 

But sin θ= λ/a 

So x/f = λ/a or x= (fλ)/a 

 
The width of the central maxima(2x) = 2fλ/a 

We see that the width of the central maxima is 

a)Proportional to λ. For red light ( longer wavelength) the width of the central maxima is more 

b)For narrow slit,it is more 

c) For white light, the central maxima is white but the rest of the diffraction bands are coloured. 

 
d) From the relation sin θ=λ/a, it is clear that if ‘’a’’ is large, then sinθ is small.Then maxima and minima 

are very close to the central maxima. Distinct diffraction fringe pattern on both sides of the central 

maxima are observed. 

 

A plane transmission grating having 5000 lines/cm diffracts monochromatic light of wavelength 

5000A.Find out the angle of diffraction for the 2nd order maximum. 



 

 

Using the formula for the plane diffraction grating i.e. 

(c+d) sin θ= nλ , θ is the angle of diffraction 

(c+d)=5000lines/cm, λ=5000A n = 2 

Θ = sin-1 [nλ/(c+d)] 

 
 

 
Maxwell' 

Maxwell’s equations to determine the electromagnetic field equations in terms of the vector and scalar 

potentials. 4.5 



 

 

   

   

   

   

   

         

       

Maxwell’s four electromagnetic equations are 
 

         , for free space (1) 

 
         (2) 

 
(3) 

 

(4) 

 

If we write B=      then the identity      is proved. Here A is known as the vector potential. 

Equation (3) can be written in terms of A as 

                (5) 

 
                  

   

 

Or, (      
   

      

 
Then we can write E = so that the vector identity is satisfied. 

 

                      ) = 0 

 
Or,                     

 
Or, ,         

   
       Electromagnetic wave equation in term of scalar potential 

Equation (4)         

Or, =  
     

 

 

Or, By applying the Lorentz condition and putting the expression 
 

for E=         

 
Then the electromagnetic wave equations in terms of scalar and vector potential for free space non 

conducting media will be written as 

=0 



 

 

     -     

     -     

         
        

 

         
 

        

 

Lecture No 11 

A particle of energy E strikes a potential barrier of height V0>E.Write the Schrodinger equation for the 

problem and state the boundary conditions. 7 

 

The particle is having potential (Vo)greater than the energy. The potential acts as a barrier .The 

Schrodinger’s equation for the particle where Vo >E is written as 

 

Figure 

 
In the region 1, when V=0, Schrodinger’s equation is written as 

 

     

     
+ 

   

   – E Ψ1 = 0 

 

Or,
 
+ Ψ = 0 

 
Sol. Ψ(x) = A                   

 
In region 2, when V=V0 Schrodinger’s equation is 

 

     

      
+ 

   

     (Vo – E) Ψ 2= 0 

 

Or ,
 
+ Ψ = 0 

 

2 

 

Sol. Ψ2(x) = C                   

 
As there is no reflection part in region 2, the second term in the above expression becomes zero. 

A,B,C are the proportionality constants to be determined by applying the boundary conditions. 

Boundary conditions: 

(i) Ψ(x) at reg.1 = Ψ(x) at reg.2 =0 at x=0 

Ψ1(x)=Ψ2(x) at x=0 



 

 

   
(ii) 

     
            

     
          

   

       

   
=

 
       

   
at x=0 

From the above two boundary conditions we get A+B=C 

and (k1-k2)A = (k1+k2) B 

B= 
             and  C= ( 

   
 

 

               
Reflection co-efficient ( R )=  

              
 = 2

 

      

Transmitted  co-efficient ( T) = 
                  

  
     

 

 

T + R = 1 

 
When the potential of the particle is more than the total energy, then the transmitted flux along with 

the incident (total reflected) is equal to unity. 
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Gauss’s law of electrostatics and give mathematical expressions of the law in integral and differential 

form. 3 

 

Gauss’s law in electrostatics 

 
The divergence of the electric field over a surface area is equal to 1/ε0 times the total charges included 

within that surface area. 

 

Mathematically, 
 
 
 

 

 
c)Prove the transverse nature of the electromagnetic wave in free space. 4 

 
Sol.An electromagnetic wave is represented by the equation 

 
E(x,t) = ; E represents the electric field and is the magnitude of it at t=0 

 
B(x,t) = ; B is the magnetic field and is the magnitude of the magnetic field at t=0 

 
Transverse nature of electromagnetic wave 

= 0 



 

 

   

V        

Considering Maxwell’s electromagnetic equation 
 
 

                                     

 

   X = -             
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Schrodinger wave equation for a particle moving in cubic potential box 

 
Schrodinger’s time independent wave equation is written as 

 
            Ψ ( , t )= 0 

 
Let us consider a particle inside a cubical box whose sides are equal. The width of the box along the x- 

direction is taken as a within which the particle is free to move. 

 

Hence the type of potential used here is 

 

                     
               

 
Figure 



 

 

 
 

 

 
 
 
 

 
For 0< x < a, Schrodinger’s time independent equation is written as 

 

     
      Ψ = 0 asV (x ) = 0 

 

Or, Ψ = 0 where
     

     

 
Sol. Ψ(x) = A sin αx + B cos αx 

 
A & B are the proportionality constants to be determined by applying boundary conditions. 

 
Boundary conditions 



 

 

  

  

  

  

n 

As the wave function is continuous in nature, hence 

Ψ(x) I x=0 = x=a 

     
I x=0 = I x=a 

 
By using these boundary conditions the expression for the wave function for a particle inside a box is 

written as 

 

Ψ (x)= A sin αa as B = 0 

 
A can be found out by applying normalization condition i.e. 

 
 
  
       (x)dx = 1 

This implies A =   

For nth state the wave function is written as 

 

Ψ (x)=   

 

Where α = 
   

    
(applying the boundary condition ) 

 

     

The energy eigen values are = 
    

 

 
As E is directly proportional to the square of the integer hence the energy values are discrete. 
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black body radiation 5 

The body which absorbs all the radiations falling on it and radiates all the radiations after sometime is 

known as a black body.In actual practice it is not possible to realise a perfectly black body but an 

enclosure provided with a small opening serves the purpose because the radiation entering the 

enclosure will be reflected many times inside it and ultimately get absorbed. 

In 1859, Kirchoffderivedtwo laws about the black body which are of radical importance in arriving at the 

properties possessed by the black body radiation. 



 

 

i) A black body not only completely absorbs all the radiations falling on it but conversely behaves as a 

perfect radiator when heated. 

 

ii) The radiation given out by a black body depends only on the temperature to which the black body is 

raised and is independent of the nature of the body. 

 

In 1884, Stefan and Boltzmann showed that the energy of radiation in unit volume of space due to all 

wavelengths in the spectrum is proportional to the fourth power of the absolute temperature of the 

black body 

 

In 1893, Wien in order to find the actual distribution of energy in thermal spectrum tackled the problem 

in a more precise and analytical manner and obtained thermodynamically the following two relations: 

 

i) λT = a constant 

ii) = a constant 

      λ is the wavelength corresponding to the temperature T and is the emissive 

power. 

 

In 1900,Rayleigh and Jeans tackled the problem of energy distribution in a different manner.They 

derived the radiation law considering that the radiation is broken up into monochromatic wave trains 

and the number of such wave trains or equivalent degrees of freedom lying between frequency range ν 

and ν + dν is determined. The energy carried by each degree of freedom is calculated from general 

statistical theory and hence energy density distribution can be determined. 

 

           k T 

 
Wien’s formula agreed with the experimental curves for the short wavelengths and Rayleigh- Jean’s 

formula for long wavelengths .None of the above could explain the whole experimental curves and 

hence a new revolutionary hypothesis emerged due to Planck . 

 

In 1905, Max Planck explained the energy distribution throughout the black body radiation based on 

the following points: 

 

i) A chamber containing blackbody radiations is considered as it contains simple harmonic 

oscillators of molecular dimension which can vibrate with all possible frequencies. 

 

ii) The frequency of radiations emitted by an oscillator is the same as the frequency of its vibration. 



 

 

   

iii) An oscillator can’t emit energy in a continuous manner . It radiates the energy in terms of photon ,the 

quanta of electromagnetic radiation. 

 

According to Planck, the black body radiation can be taken as number of harmonic oscillators coantained 

within a container.The harmonic oscillators have the frequency equal to the frequency of the black body 

radiation.In Planck’s quantum theory , the energy of oscillating particle is = hγ 

 

Where h is the Planck’s constant, γ is the oscillating frequency and n=0,1,2…… 

 
In plank’s radiation theory the vibrating particle does not radiate energy continuously but 

discontinuously in terms of discrete quanta or photon.When the oscillator moves from one state to the 

other state it emits or absorbs energy. 

 

Energy of the photon= hc/λ 

 

Mass of photon= 
      

  
 

 
Momentum of the photon = h/λ 

 
Let us calculate the number of states in a black body radiations in the frequency range of ν and ν+dν by 

finding the spherical volume bounded by the spheres of radii 
 
 

The volume of the spherical shell = 4π dν 

     

  
and 

 

The phase space has a volume V= and there are two states of polarisation of the radiation.Number of 

states in the black body radiation in the frequency range ν and ν+dνis given as 

 
dn= 

 
    

      . 

 
     

 

       
      

 

For dn photons in the frequency range ν and ν+dν , the energy is equal to hνdn and the energy per unit 
      

volume = 

 
So the energy distribution for black body radiation will be 

 

      E(ν) = represents the Planck’s law for black body radiation 
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Fresnel’s half period zones and why they are named so ?Show that the radius of the Fresnel half period 

zone is directly proportional to the square root of natural numbers. 4 

Let’s consider a point source S of monochromatic light which ia at sufficiently large distance so that for 

all practical purposes, we consider plane wavefront only. 



 

 

Figure 



 

 

  

We have to find out the resultant amplitude at O due to the exposed part of the wavefront XY having its 

pole at P. 

 

To find the resultant effect at O, let ABCD be the plane wave front of the monochromatic light of 

wavelength λ at any time. 

 

Every point on ABCD become the centre of disturbance and the net effect can be found due to all these 

disturbances reaching at O.All the points on ABCD are in the same phase and the secondary originating 

from ABCD will reach O with different phases. 

 

The wave front ABCD is divided into number of half period zones. 

 
Let OP=b 

 
Radii of different sections can be obtained 

OM1= b+λ/2 

OM2=b+λ 

OM3= b+3λ/2 

…………………… 

 
…………………… 

 
A series of concentric spheres can be cut the wave front ABCD in circles of radii PM1,PM2……The areas 

enclosed between PM1,M1M2,M2M3….etc are known as half period zones. The area corresponding to 

PM1 is known as the first half period zone. 

 

PM1=              

 
         

   
      

  

 
=    

 
 

PM2=            

 
=                 

= 



 

 

  

  

 
 

=      
 

PMn-1=            

 
 

PMn=      
 

The area enclosed between M1M2gives the second half period zone, M2M3 gives the third half period 

zone and so on. 

 

Area of the 1st half period zone : π  = π b λ 

Area of the nth half period zone :π =n π b λ 

From the above expressions we see that r n is directly proportional to the square root of the natural 

number. 
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potential barrier: 

Obtain the solution for Schrodinger’s equation for different regions. 
 
 
 

Figure 

 
If the force field acting on a particle is zero or nearly zero everywhere except in a limited region, it is said 

to be a potential barrier. At x=0, the force field acting on a particle is V0. V0 is called the height of the 

potential barrier. 

 

Classical concept : Classically a particle in region 1 can move freely as the force field is zero but at x=0, 

discontinuity occurs and we have to consider two cases. 

 

Case 1 (E <V0) :In this case the particle will remain in the region 1 for ever. If sometimes the particle is 

moving towards the x-direction ,it will be reflected back at x=0 

 

Case 2 ( E>V0 ) : Classically we expect that the particle would not be reflected at x=0. This is due to the 

fact that the particle has enough energy to enter the region x >0. 

 

Quantum theory for single step potential barrier: 



 

 

For E>V0, when the wave packet reaches the barrier a part is reflected and apart is transmitted. 

The Schrodinger equation for the first region is 

 

 
 

 

Or, 
 

          
                 where            

 
General solution: Ψ1(x,t)= A (i) 

For region 11 where x> 0, V > V0 

 

 

 
Or, where                    

 
General solution:Ψ2(x,t)= C (ii) 

 
In equation (i), represents a wave advancing in the positive direction of x i.e. the incident wave and 

       represents a wave moving in the negative direction of x i.e. reflected wave. 

 
In equation (ii),     represents a wave advancing in the positive direction of x i.e. transmitted wave 

and   represents a wave moving in the negative direction of x i.e. reflected wave. As discontinuity 

only occurs at x=0, hence there should not arise a question of reflection in this region.Due to this fact 

the term the second region. 

Hence Ψ2(x,t)= C (iii) 

 
A,B,C are the constants whose values can be obtained by applying boundary conditions. 

Since Ψ is continuous, we have the following boundary conditions : 

Ψ1 (x,t)=Ψ2(x,t) at x=0 
 

          

    = 
          

    at x=0 



 

 

Using the above boundary conditions we have A+B=C 
 

       
(α – β)A= (α + β)B or, B= A 

 
   

C= 
        

 

If V and V1 are the velocities if incident and transmitted particles, then α = 

 
   

Or, V= 
 

 

 
    

Β = or, V1 = 
 

Since V1< V, the velocity of transmitted particle in such a region is less than the incident velocity 

which is same as the velocity of the incident beam, some of the particles can come to the 

region 2 even E < V0 . 
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Standing wave 2 

When two identical progressive waves travel through a medium along the same line in opposite 

directions with equal velocities, they superpose over each other and produce a new type of wave which 

is known as the stationary wave or standing wave.They are stationary as there is no flow of 

energy.There are certain points ,half a wavelength apart which are permanently at rest called ‘nodes’ , 

midpoint between the nodes ántinodesoccurs where amplitude is maximum. 

The characteristics that distinguish a standing wave from a travelling one 3 

(i) A travelling wave is an advancing wave which moves in the medium continuously with a finite velocity. 

There is no advancement of the wave in any direction. 

(ii) As the particles move with certain velocity, flow of energy occurs. 

There is no flow of energy in case of stationary waves. 

  



 

 

(iii) Each particle of the wave executes simple harmonic motion about the mean position with the same 

amplitude. 

 

Every particle executes SHM except the nodes. 

 
(iv) No particle is permanently at rest position in a travelling wave. 

 
Nodes are permanently at rest position in case of standing wave. 

 
(v) The phase of vibration varies from point to point in a travelling wave. 

 
All the points vibrate with the same phase in the case of a standing wave. 

 
(vi) All the particles do not pass through the mean position but in case of standing wave all the particles 

pass through the mean position and reach the outermost positions simultaneously twice in periodic 

time. 
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meaning of fringe width and show that in a Young’s double slit arrangement ,the fringe width for bright 

or dark fringes are same. 4 



 

 

 
 

Let’s consider a point P on the screen at a distance y from the axial point O. The distance between the 

source and the screen (D) is quite large compared to the the distance between the slits (d) and the 

distance of the point P from the centre of the screen(y). 

 

The path difference is 

 
  = S2P –S1P 

 
Now  S1P = [                      ] ^1/2 

Or, S1P = D + 



 

 

   

 

Similarly, S2P= = D + 

 

Then the path difference = 
 

Now for maximum intensity 
    

     
= nλ , n=1,2,3…… (for bright fringes) 

 
 

For minimum intensity 
    

= (2n+1) , n=1,2,3…..(for dark fringes) 

 

Where n=1,2,3,…. Correspond to the 1st,2nd,3rd…. fringes. 

 
Expression for fringe width: It is the separation between two consecutive bright or dark fringes. 

 

   
The position of the pth bright fringe is yp=

  
 

 

The position of the (p+1)th bright fringe is yp+1 =
     

        

 
   

Fringe width (β) = yp+1- yp = 
  

 

 
In a plane diffraction grating the width of a slit is double the width of a line.Find the orders of the 

missing spectral lines. 4 

 

Ans.Let the width of the slit is denoted as ‘a’ and the width of the line is ‘b’ 

a=2b 

We know that 

(a+b) sin θ = nλ 

is the condition for the principal maxima for nth order and the condition for the minima due to a single 

slit is 

a sin θ = mλ 

So n=  

When a=2b, n=(3/2)m 

  



 

 

So 3/2, 3rd,9/2th ,… ...... orders of spectra will be missing corresponding to the minima given by 

m=1,2,3… 
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Einstein’s theory explains this ? 

 
Einstein explained the photoelectric effect on the basis of quanta of electromagnetic radiation known as 

photon.When the suitable energy more than that of the threshold value incident on the photometal, 

some part of its energy is used to eject the loosely bound electron measured in terms of work function 

and part of the energy of the photon provides kinetic energy to the electron. 

 

hν = W0 + ½ mv 2 

 
This is known as Einstein ‘s photoelectric equation. 

 
W0is known as the work function of the electron. When the kinetic energy term is equal to zero ,thenhν 

= W0i.e the total energy of the photon is utilised to eject the electron. So we have to define a minimum 

frequency known as the threshold frequency above which this photoelectric effect occurs only. 

 

Corresponding to the threshold frequency, a long wavelength limit is defined below which 

photoelectric effect occurs only.This value of wavelength is known as the threshold wavelength(λ0) 

,radiations having wavelength greater than this value will not be able to eject electrons from the metal 

surface. 

 
  

λ0= = 

 
      

     
A 

 

Substituting the value of W0=hν0 , we have 

hν= hν0 + ½ m V2 

or, ½ m V2=h( ν – ν0) 

 
This is another form of Einstein’s photoelectric equation. Einstein’s photoelectric equation predicts all 

the experimental results. For a particular emitter, work function Wo is constant and hence 

 

K.E= ½ mV2ispropotional to the frequency. 



 

 

Thus the increase in frequency ν of incident light causes increase in velocity of photoelectrons provided 

intensity of incident light is constant. If V0 is the stopping potential , then 

 

eV0 = hν – hν0 
 

   
or, V0= - 

 
This the form of Einstein’s photoelectric equation written in terms of Stopping potential. 

c) Star X with aenergy of 600J gives out its maximum radiation of wavelength 3000A.What is its surface 

temperature ? 3 

 

Ans.E=600J, λ=3000A 

 
ST= E. λ/ ; is the conductivity of the medium 
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de Broglie hypothesis 

 
De Broglie’s hypothesis is concerned with a special type of wave known as matter waves which show 

both particle and wave nature of radiation. When the particles are having certain velocity the only a 

wave can be generated.In 1927,two American physicists Davisson and Germer predicted experimentally 

about the existence of matter waves. 



 

 

Figure 
 

 

In the diagram F is the filament which is heated to eject electrons by thermionic emission. 

 
G is a system of electrodes with central holes maintained at increasing potential from which 

electron beam is produced.T is a target made up of a crystal of nickel on which monoenergic 

electrons fall. C is the Faraday cylinder known as collector on which some of the scattered 

electrons entered.G is the Galvanometer to measure the amplified collector current.The collector 

can be moved on a graduated circular scale S to receive electrons. The collector has two walls 

insulated from each other.A retarding potential is applied between the inner and outer walls of 

the collector such that only fast moving electrons coming from the electron gun may enter into 

the collector and not the secondary slow electrons from the target. 

The experiment was carried out in two different positions i.e (i)normal incidence and (ii) oblique 

incidence position.In the normal incidence position the beam of electrons fall normally on the 

circular scale tovarious positions and the galvanometer current was recorded at each position .A 



 

 

graph aws plotted between the colatitude and galvanometer current.Several curves are obtained 

for different voltage electrons. 

It is observed that a bump begins to appear in the curve for 44V electrons.This bump 

moves upward as the volatage increases and attains the greatest development for 54 volts and a 

colatitude of 500.Above 54 V the bump again diminishes.The bump at this voltage offers the 

existence of electron waves.The surface rows of atoms act like the rulings of adiffraction grating 

producing the 1st order spectrum of 54 V electrons at θ= 500. 

Applying the plane diffraction of a grating 

 
nλ = (c+d ) sinθFor n=1 ,(c+d)=2.54 A we found λ=1.65 A 

Again according to the de Broglie electron wave 

λ= = 1.66 A 
  

 

This shows that the electrons have wave like characteristics 
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Diffraction pattern due to a plane diffraction grating: 

 
A plane diffraction grating is a plane glass plate on which number of parallel, equidistant lines are drawn 

with the help of a diamond pen.The lined portion being opaque and the spacing between the lines is 

transparent to the light.A plane diffraction grating is the combined effect of N number of parallel slits. 

 

Ray diagram 



 

 

 

 

 

 

 



 

 

 



 

 

Let a plane wavefront of monochromatic light is incident normally on the grating. 

c is the width of each slit and d is the separation between two consecutive slits. 

(c+d) is the grating element 

Θ is the angle of diffraction 

 
XY is the screen on which diffraction is observed 

 
When a plane wavefront is incident on normally on the grating, each point on the slit sends out 

secondary wavelets in all directions . The secondary wavelets in the same direction as of incident light 

will come to focus at O which is the point of central maximum. The secondary wavelets diffracted along 

a direction to meet the screen ‘P’posses different phases. Therefore dark and bright bands are obtained 

on both sides of the central maximum. 

 

Let S1,S2,S3……. Be the midpoints of the corresponding slits and S1M1, S2M2,S3M3……. be the 

perpendiculars drawn.The path difference between waves emanating from points S n-1 and Sn is 

 

S nMn-1 = (c+d) sin θ 

 
The corresponding phase difference is given by, 

 

  
Φ = (c+d) sin θ 
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positive and negative uniaxial crystal with examples. 3 

The wavefronts surrounding a point source S in a calcite crystal is shown as follows: 



 

 

Figure 
 



 

 

  

  

Differences and similarities between +ve & - ve crystals: 

 
(i) O-ray is outside to the E-ray in a positive crystal whereas O-ray surface lies inside E-ray 

surface 

(ii) Velocity of O-ray is constant in all directions both for +veand -ve crystals. 

(iii) Velocity of E-ray varies with direction. Maximum along the optic axis where it will be equal 

to velocity of O-ray and minimum perpendicular to the direction of optic axis for the +ve 

crystal. 

Velocity of E-ray is minimum along the direction of optic axis whereas it will 

 
be equal to the velocity of O-ray and maximum perpendicular to the direction of optic axis 

for –Ve crystal 

 

(iv) Refractive index of extra-ordinary ray is more compared to the refractive index of the 

ordinary ray for positive crystal e.g. Quartz 

 

In case of negative crystal the refractive index of extra-ordinary ray is less compared to the refractive 

index of the ordinary ray for positive crystal e.g. calcite 
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Poynting theorem: 5 

 
The electromagnetic waves carry energy and momentum when they propagate .The conservation of 

energy in electromagnetic wave phenomena is described by Poynting theorem. 

 

The electric and magnetic fields store some energy while they propagate through any medium.The 

electric energy stored per unit volume i.e.electric energy density (             

The magnetic energy stored per unit volume i.e.magnetic energy density (             

 
The total electromagnetic energy ( in a region is obtained by taking the volume integral of the 

electromagnetic energy density over the volume under consideration. 

 

             + = 
  
             



 

 

   

   

   

   

   

The rate of energy transport per unit area per unit time in electromagnetic wave is described by a 

vector known as the Poynting vector. Its unit is Watt/ .Direction of Poynting vector is along the 

direction of propagation of the electromagnetic wave which is perpendicular to the plane containing 

both electric and magnetic fields. 

Maxwell’s electromagnetic equation is 
 

   X = - 
  

 

 
and X =         

…………….(i) 
 

………………….(ii) 
 

Taking the dot product of equation (i) with and equation (ii) with and taking the difference 
 

        X                   X   = -  ............... 
  

         ………………..(iii) 

 

        = ................................................................... (iv) 

 

  . 
     

= ................................................................................. (v) 

 
Equation (iii) will become 

 
        X                   X   =  ---------------------------------       

 

= -         

 
Or,           X .............................................................................. (vi) 

 
Or,         = ................................................................................ (vii) 

 
Where X ,is known as the Poynting vector. 

 
The left hand side of equation (vii) is the rate of flow of total electromagnetic energy through the closed 

surface area enclosing the given volume.The 1st term on the right hand side of equation (vii) is the rate 

of change of electromagnetic energy per unit volume 

 

The 2nd term represents the work done by the electromagnetic field due to the source of current. 



 

 

       

    

    

=  = 

Lecture No.24 

 
Maxwell’s 4 electromagnetic equations for free space (J=0 and 0) are 

 

  . . , X      
     

, X               
 

  - 
   

 

The magnetic field (B) in terms of vector potential (A) can be written as =        

 
Taking the cross product of Maxwell’s 3rd equation with operator 

 
   X X = - X or, ( . )- = - X    

 

Using the Lorentz gauge condition ( . )-
 
=0 

 
Maxwell’s electromagnetic wave equation in terms of electric field is 

 

     -
 
= 0 

 
Maxwell’s electromagnetic wave equation in terms of magnetic field is 

 

     -
 
= 0 
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The expression for the transmission probability when the energy of the the incident particle is more 

than the height of the barrier is the ratio of the transmitted flux to the incident flux. 

 
Transmisson probability = 

 
      

         
 

    

 

Where   
    

   , 
 

When energy of the particle (E)= Height of the barrier ( ), then transmission probability is equal to 

zero. 
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An expression of the Compton shift. 

 
Ans.The scattering process of an electromagnetic radiation incident on a metal where the electron is 

free and at rest considered as an elastic collision between the photon and electron is known as 

Compton effect. The scattered photon has more wavelength compared to the incident one and the 

change in wavelength is described in terms of the Compton shift. 

 

Figure 6 :Compton scattering effect 



 

 

 
 
 

 
 

 
Two conservation laws are applied here: 

 
i)Conservation of energy 

ii)Conservation of momentum 

The total energy carried by the electron photon system before collision = Energy of the + energy of 

the photon = + hν 

The total energy carried by the electron photon system after collision= m + hν’ 



 

 

According to conservation of energy , 

 
      + hν = m     + hν’ ............................... (1) 

 
The momentum carried by the electron photon system along the direction of incidence before collision 

   

= 0 + 

 
The momentum carried by the electron photon system along the direction of incidence after 

collision =mv + 

Considering the conservation of momentum along the direction of incidence 
 

   
0 + = mv + 

    

    
....................(2) 

 
Conservation of momentum perpendicular to the direction of incidence 

 
 

0+0 = mv sin φ + 
    

    
sin θ ............................... (3) 

 
Where θ is known as the scattering angle and φ is the angle of recoil. 

The collision process is an elastic and relativistic one. 

m = 
         

 

, +      
    

   
  

  

 

Using the equations (1),(2),(3) and above relations we will get 
 

   
  

 
=   

   

 
   

Or, λ’ – λ = 
   

 

 

This is the expression for the Compton shift. 
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Characteristics of lasers: 

Lasers have the following characteristics: 



 

 

1. High monochromaticity 

 
In ideal case,the LASER emits all photons with the same energy and same wavelength.The laser light has 

a single spectral colour and is almost the purest monochromatic light available. 

 

2. high frequency stability : It is the most important characteristic of laser used in interferrometric 

measurements. 

 

3. Switching characteristic of laser : Broad band video transmission systems promise attractive 

applications for future optical fibre subscriber loop systems.For such transmission systems it would be 

extremely convenient to be able to switch broad band optical signals without optical to electrical signals. 

 

4. In medical sciences laser has the most important application .Due to monochromaticity bloodless 

surgeries are performed with the help of laser. 

 

5. In mechanical welding, yielding laser can be used. 

 
When a material is in thermal equilibrium state, derive the relation between population in higher and 

lower state. 

 

The atoms are distributed at thermal equilibrium according to the Boltzmann equation 

N=e –E/kT 

K is the Boltzmann constant and E is the energy levels. At thermal equilibrium, the number of atoms 

(population) decreases when the energy increases. At E1 and E2 the number of atoms are written as 

N1 =e –E1/kT 

 
N2=e-E2/kT 

 
N2/N1 = e-E2/kT/ e-E1/kT 

Or,N2 = N1e - kT 

Where E=(E2-E1) 

Let us consider hydrogen gas to be a mono atomic gas and find out the atomic population at room 

temperature at the first excited level. Here E1=—13.6eV, E2= 3.39eV and T=300K. 



 

 

N2/N1=0 

 
This implies that at room temperature all atoms are in ground state.If the temperature is raised to 

6000K. 

 

Then N2/N1 = 2.5X 10-9 

 
We thus find that in a material at thermal equilibrium, more atoms are in the lower energy state than in 

the higher energy state. 

 

In the limiting case E2-E1=0, we find that N2/N1=e0=1 ⇒ N2=N1 

 
From the above relations we see that at room temperature the number of population is higher at lower 

energy compared to the population at higher energy.As long as the material is in thermal equilibrium, 

the population of the higher state can not exceed the population of the lower state. 
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Determine wavelength of sodium light by using plane diffraction grating: 

Ans. A diffraction grating is a plane glass plate on which number of parallel, equidistant 

lines are drawn with the help of a diamond pen. The lined portion being opaque and the spacing 

between the lines are transparent to the incident light. A plane diffraction grating is the combined effect 

of N number of parallel slits. 

 

Figure 9 : Plane diffraction grating 



 

 

 



 

 

Let a plane wavefront of monochromatic light be incident normally on the grating. The width of each slit 

be c and the separation between any two consecutive slits be denoted as d. 

 

When a plane wave front is incident normally on the grating, each point on the slit sends out secondary 

wavelets in all directions. The secondary wavelets in the same direction as of incident light will come to 

focus at o which is the point of central maximum. The secondary wavelets diffracted along a direction to 

meet the screen posses different phases. Therefore dark and bright bands are obtained on both sides of 

the central maximum. 

 

Figure 10 : Fraunhofer diffraction due to multiple slits 
 

 



 

 

= A      

    
 

 

Let S1, S2,S3….. be the mid points of the corresponding slits and S1M1, S2M2 … be the 

perpendiculars drawn.The path difference between the waves emanating from points Sn-1 and Sn is 

 

SnMn-1 = (c+d) sinθ 

 
The corresponding phase difference is given by 

 

  
Φ = ( c+ d ) sin θ 

 
For single slit case, the amplitude at p is found to be 

 
The resultant of the waves coming from N number of slits is 

Y = A sin wt + A sin (wt + φ )+ A sin ( wt + 2φ)+……….. 

          
    

      

 

        

Intensity due to the resultant waves ( I )= A2     
 

  

 

For principal maxima we have 

Φ = ± n π 

  
Or, ( c+ d ) sin θ = ± n π 

 
Or,( c+ d ) sin θ = ± n λ 
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Differences among plain polarized,circularly polarised,elliptically polarised and unpolarised light. 

 
 
 

Ans. If the vibrations are along the direction of propagation of a polarised light, then it is known as plane 

polarised .We can get a plane polarised light by reflection, by transmission through a pile of plates, by 

double refraction, by selective absorption and by scattering.The intensity of the emergent light varies 

from maximum to minimum twice when it is passed through a nichol prism. 

 

Figure 11 : Different types of polarisation 



 

 

 



 

 

 



 

 

 



 

 

When the vibrations are scattered in a circular form then it is known as a circularly polarised 

light.To detect a circularly polarised light, it is first passed through a quarter wave plate and then viewed 

through a rotating Nichol.Firstly it is converted into a plane polarised light by the quarter wave plate. 

Then it will show variation in intensity from maximum to zero minimum twice by passing through a 

Nichol prism. 

 

Figure 12 : Circularly polarised light 

 

 

When the variation of the vibrating particles comes ain an elliptical form then it is known as 

elliptically polarised light.If elliptically polarised light beam is passed through a rotating Nichol the 

intensity of emergent light varies from maximum to minimum.The minimum intensity never be zero.To 

detect elliptically polarised light, the beam is first passed through a rotating Nichol.In case the beam is 

elliptically polarised, it will be converted into plane one by quarter wave plate. Then the change in 

intensity will be observed by passing through a rotating Nichol. 

 

Figure 13 :Different types of polarised light 



 

 

 

 



 

 

When a ray is incident at an angle 590 on a glass slab,refracted ray and reflected ray are found to be 

perpendicular to each other.Calculate the polarising angle and refractive index of the glass. 

 

Ii = 590 

 
Ip = 310 

 
Refractive index = tan-1(Ip) 
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Einstein’s relations for lasers. 

 
The upward transition between two energy levels (absoption) , the downward transition from 

the upper to the lower level(emission) and stimulated transition are described by certain 

equations known as Einstein’s relations. 

 
Under thermal equilibrium condition the mean population in the lower and 

upper levels are same.The transition from the upper to lower energy level must be equal to the 

transition from the lower to the upper level. Thus, 

The number of atoms absorbing photons per sec per unit volume = The number atoms emitting 

photons per second per unit volume 

The number of atoms absorbing photons per second per unit volume = B12ρ(ν)N1 

 
The number of atoms emitting photons per second per unit volume = A21N2+ B21ρ(ν)N2 

 
In equilibrium condition , the number of transitions from E2 to E1 must be equal to the number 

of transition from E1 to E2. Thus, 

B12ρ(ν)N1= A21N2+ B21ρ(ν)N2 

Or,ρ(ν)= = A21N2/ B12N1 - B21N2 

where B12 is the co-efficient of absorption,B21 is the co-efficient of emission and A21 is the co- 

efficient of stimulated emission. 



 

 

          

On dividing both the numerator and denominator on the right hand side of the above equation 

with B12N2, we get 

 
    

 

ρ(ν) =       
    

 

  

 
It follows from the above equation that 

N1/N2 = e(E2-E1)/kT 

As (E2-E1) = hν 

 
    

ρ(ν) = 
   

       
 
 

To maintain thermal equilibrium, the system must release energy in the form of 

electromagnetic radiation. 

Energy density will be consistent with Planck’s law only if 

B12 = B21 

And A21/B12 = 8 hν3µ3/c3 

 
Therefore, B12 = B21= (c3/8 hν3µ3)A21 

 
The above equations are known as Einstein’s relations. 
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Tunneling effect 

 
In quantum mechanics, when the energy of the particle is less than the total energy of the system 

then also there is some probability to get the particle free which is not possible in classical 

mechanics.This phenomenon of crossing over the potential barrier when the total energy of the 

particle (E) < height of the potential barrier(Vo) is known as the tunnelling effect. 

The time independent Schrodinger;s equation is written as 

  



 

 

     

     
+

 
   

   –( E-Vo ) Ψ1 = 0 , (1) 

 

Where Ψ1 represents the wave function in region 1.In the region 1 the particle is assumed to be free so 

V0 =0, the particle does not have to pass through a barrier. 

 

In region 2, let the wave function be denoted as Ψ2, here the particle has to overcome a potential 

barrier and let it be denoted as V0. 

The time independent Schrodinger;s equation in region 2 is written as 
 

      
-      –( E-Vo ) Ψ2 = 0 , (2) 

 
In the region 2, the particle has to make several head on collisions with the wall s of the potential barrier 

and after about 1038 collisions/sec the particle can get over to the third region and again become free. 

Here the energy of the particle is much less than that of the potential strength. 

 

In region 3, let the wave function be denoted as Ψ3. 
 

    

   
+

 
   

    – E  Ψ3 = 0 (3) 

 

By applying appropriate boundary conditions ,the above three Schrodinger’s equation can be solved 

to get the expression for transition probability. 
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Working principle of Ruby laser. 

 
Ruby laser is the first one .It is a three level laser system and the energy levels of Cr3+ ions in the crystal 

lattice play the role for lasing action. There are two wide bands E3 and E3’ and a pair of closely spaced 

levels at E2.When the ruby rod is irradiated with an intense beam of white light from xenon lamp, the 

ground state Cr3+ ions absorb light in two bands(i) one centred near 5500A and the other at about 

(ii)4000A and are excited to the broad upper bands.The energy levels in these bands have a very small 

lifetime ≤ 10-9sec.The excited Cr3+ ions rapidly lose some of their energy to the crystal lattice and 

undergo non-radiative transition to the pair of adjacent levels denoted as E2.These levels are metastable 

states having a lifetime 3x10-3 sec.The transition from E2 to E1 is radiative. 



 

 

Figure 26:Ruby laser 

 

 
The population inversion occurs in E2 with respect to the ground level when the pumping energy 

above a critical threshold value.One of the spontaneously emitted fluorescent photons travelling 

parallel to the axis of the ruby rod would initiate stimulated emissions.The photons get many relections 

and the lasing action starts.The laser beam from the ruby rod is red in colour and corresponds to a 

wavelength of 6943 A.The green and the blue components of light act as the agent and these 

components are not amplified by the active medium.It is a spontaneous fluorescent photon red in 

colour emitted by one of the Cr3+ ions that act as input and gets amplified. 

The xenon flash operates for a few milliseconds. The output occurs in the form of irregular 

pulses of microsecond duration as the stimulated transitions occur faster than the rate at which 

population inversion is maintained in the crystal. Once the stimulated transitions started , the 

metastable states get depopulated very rapidly and at the end of each pulse, the population falls below 

the threshold value and results in end of the lasing action.The ruby laser has the high energy storage 

capability because of long upper laser level lifetime of 3msec.Thus,pulse energies of upto 100 J are 

possible. 



 

 

Figure 27: Ruby laser with internal and external mirror ,energy levels of Ruby laser 
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Applications of different types of lasers. 

 
(i) Ruby laser is used in holography. 

 
(ii) Neodymium laser is used a)to produce green light used for traffic signal. 

 
b) widely in material processing and resistor trimming 

 
c) in medical applications in association with optical fibre delivery 

systems to deliver energy to the appropriate location in the body. 

 

d) in nuclear fusion and and in military applications such as range 

finding. 
 

(iii) Solid state laser s are used for remote sensing and in space crafts.. 

 
(iv) Alexandrite laser is widely used in cancer therapy, pollution detection and kidney stone 

removal. 

(v) Fiber lasers are highly useful in under sea communication and long haul communication 

skills. 

(vi) He-Ne gas lasers are widely used in laboratories as a monochromatic source in 

interferrometry, laser printing, bar code reading, reference beam in surveying for alignment in 

pipe laying. 

(vii) Krypton ion laser is used for multicolour display. 

 
(viii) He-Cd laser is used in photolithography, inspections of electronic circuit boards,CD-ROM 

mastering,fluorescence analysis and so on. 

(ix) Copper vapour lasers are used to pump tunable dye lasers, high speed flash photography 

and material processing. Gold vapour laser is used in photodynamic therapy for destroying the 

cancerous cells. 



 

 

(x) CO2 laser is used in the field of material processing, cutting, drilling, material removal, 

welding, etching, melting, annealing, hardening etc. 
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Experimental arrangement for production of elliptically polarised light from unpolarised light. 

 
The unidirectional path of light perpendicular the plane of propagation/vibration is known as the 

polarisation of light. 

 

Figure 31: Elliptically polarised light from unpolarised light 



 

 

 

 

 

 

 

 

 

 



 

 

Referring to the figure P is the polariser through which unpolarised light passes through 

 
A is the analyser through which elliptically polarised light can be easily analysed after passing through 

the clamp and screw arrangement 

 

The amplitude of the plane polarised light while entering the quarter wave plate splits into two 

mutually perpendicular components having a phase angle of /2 between the ordinary and extra 

ordinary rays.The quarter wave plate Q is again rotated about the outer fixed tube till the field again 

becomes dark. C is rotated that the mark M on Q coincides with mark 45 0 on the tube. 

Elliptically polarised light is produced when the two waves of unequal amplitudes vibrating at right angle 

to each other and having a phase difference of   /2 or path difference of λ/4 occurs between 

them.When plane polarised light falls normally on aquarter wave plate in such a way that the plane of 

vibration of the incident light makes an angle other than 450 with the direction of optic axis, then 

elliptically polarised light is produced. 
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de Broglie hypothesis was confirmed by Davisson and Germer ? 

 
Ans.De Broglie’s hypothesis is concerned with a special type of wave known as matter waves which 

show both particle and wave nature of radiation. When the particles are having certain velocity the only 

a wave can be generated.In 1927,two American physicists Davisson and Germer predicted 

experimentally about the existence of matter waves. 

 

Figure 36: Davisson Germer experiment 



 

 

 



 

 

In the diagram F is the filament which is heated to eject electrons by thermionic emission. 

 
G is a system of electrodes with central holes maintained at increasing potential from which 

electron beam is produced. 

Tis a target made up of a crystal of nickel on which monoenergetic electrons fall. 

 
C is the Faraday cylinder known as collector on which some of the scattered electrons entered. 

 
G is the Galvanometer to measure the amplified collector current.The collector can be moved on 

a graduated circular scale S to receive electrons. The collector has two walls insulated from each 

other.A retarding potential is applied between the inner and outer walls of the collector such that 

only fast moving electrons coming from the electron gun may enter into the collector and not the 

secondary slow electrons from the target. 

The experiment was carried out in two different positions i.e (i)normal incidence and (ii) oblique 

incidence position.In the normal incidence position the beam of electrons fall normally on the 

circular scale tovarious positions and the galvanometer current was recorded at each position .A 

graph was plotted between the colatitude and galvanometer current.Several curves are obtained 

for different voltage electrons. 

Figure 37: The experiment carried out at different voltages 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is observed that a bump begins to appear in the curve for 44V electrons.This bump 

moves upward as the volatage increases and attains the greatest development for 54 volts and a 

colatitude of 500.Above 54 V the bump again diminishes.The bump at this voltage offers the 



 

 

existence of electron waves.The surface rows of atoms act like the rulings of adiffraction grating 

producing the 1st order spectrum of 54 V electrons at θ= 500. 

Applying the formula for plane diffraction of a grating 

nλ = (c+d ) sinθ 

For n=1 ,(c+d)=2.54 A we found λ=1.65 A 

Again according to the de Broglie wave particle dualism electron wavelength 

λ= = 1.66 A 
  

 

This shows that the electrons have wave like characteristics. 
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An optical fiber is a flexible, transparent fiber made by silica or plastic to a diameter 

slightly thicker than that of a human hair. Optical fibers are used most often as a means to 

transmit light between the two ends of the fiber and find wide usage in fiber-optic 

communications, where they permit transmission over longer distances and at higher bandwidths 

(data rates) than wire cables. Fibers are used instead of metal wires because signals travel along 

them with lesser amounts of loss; in addition, fibers are also immune to electromagnetic 

interference, a problem which metal wires suffer from excessively. Fibers are also used for 

illumination, and are wrapped in bundles so that they may be used to carry images, thus allowing 

viewing in confined spaces, as in the case of a fiberscope. Specially designed fibers are also used 

for a variety of other applications, some of them being fiber optic sensors and fiber lasers. 

 

Optical fibers typically include a transparent core surrounded by a transparent cladding 

material with a lower index of refraction. Light is kept in the core by the phenomenon of total 

internal reflection which causes the fiber to act as a waveguide. Fibers that support many 

propagation paths or transverse modes are called multi-mode fibers (MMF), while those that 

support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a 

wider core diameter and are used for short-distance communication links and for applications 



 

 

where high power must be transmitted. Single-mode fibers are used for most communication 

links longer than 1,000 meters (3,300 ft). 

 

When the light passes from air into water, the refracted ray is bent towards the 

perpendicular... When the ray passes from water to air it is bent from the perpendicular... If the 

angle which the ray in water encloses with the perpendicular to the surface be greater than 48 

degrees, the ray will not quit the water at all: it will be totally reflected at the surface. ... The 

angle which marks the limit where total reflection begins is called the limiting angle of the 

medium. For water this angle is 48°27′, for flint glass it is 38°41′, while for diamond it is 23°42′. 

 

Practical applications, such as close internal illumination during dentistry, appeared early 

in the twentieth century. Image transmission through tubes was demonstrated independently by 

the radio experimenter Clarence Hansell and the television pioneer John Logie Baird in the 

1920s. The principle was first used for internal medical examinations by Heinrich Lamm in the 

following decade. Modern optical fibers, where the glass fiber is coated with a transparent 

cladding to offer a more suitable refractive index, appeared later in the decade. Development 

then focused on fiber bundles for image transmission. Harold Hopkins and Narinder Singh 

Kapany at Imperial College in London achieved low-loss light transmission through a 75 cm 

long bundle which combined several thousand fibers. Their article titled "A flexible fibrescope, 

using static scanning" was published in the journal Nature in 1954. The first fiber optic semi- 

flexible gastroscope was patented by Basil Hirschowitz, C. Wilbur Peters, and Lawrence E. 

Curtiss, researchers at the University of Michigan, in 1956. In the process of developing the 

gastroscope, Curtiss produced the first glass-clad fibers; previous optical fibers had relied on air 

or impractical oils and waxes as the low-index cladding material. 

NASA used fiber optics in the television cameras that were sent to the moon. At the time, the use 

in the cameras was classified confidential, and only those with sufficient security clearance or 

those accompanied by someone with the right security clearance were permitted to handle the 

cameras 

The emerging field of photonic crystals led to the development in 1991 of photonic-crystal fiber, 

which guides light by diffraction from a periodic structure, rather than by total internal reflection. 

The first photonic crystal fibers became commercially available in 2000. Photonic crystal fibers 



 

 

can carry higher power than conventional fibers and their wavelength-dependent properties can 

be manipulated to improve performance. 

Optical fiber can be used as a medium for telecommunication and computer networking 

because it is flexible and can be bundled as cables. It is especially advantageous for long- 

distance communications, because light propagates through the fiber with little attenuation 

compared to electrical cables. This allows long distances to be spanned with few repeaters. For 

short distance application, such as a network in an office building, fiber-optic cabling can save 

space in cable ducts. This is because a single fiber can carry much more data than electrical 

cables such as standard category 5 Ethernet cabling, which typically runs at 100 Mbit/s or 1 

Gbit/s speeds. Fiber is also immune to electrical interference; there is no cross-talk between 

signals in different cables, and no pickup of environmental noise. Non-armoured fiber cables do 

not conduct electricity, which makes fiber a good solution for protecting communications 

equipment in high voltage environments, such as power generation facilities, or metal 

communication structures prone to lightning strikes. They can also be used in environments 

where explosive fumes are present, without danger of ignition. 

Lecture No.38 

 
Characteristics of fiber optics: 

 
The advantages of optical fiber communication with respect to copper wire systems are: 

 
Broad bandwidth 

A single optical fiber can carry 3,000,000 full-duplex voice calls or 90,000 TV channels. 

Immunity to electromagnetic interference 

Light transmission through optical fibers is unaffected by other electromagnetic radiation 

nearby. The optical fiber is electrically non-conductive, so it does not act as an antenna to 

pick up electromagnetic signals. Information traveling inside the optical fiber is immune 

to electromagnetic interference, even electromagnetic pulses generated by nuclear 

devices. 

Low attenuation loss over long distances 



 

 

Attenuation loss can be as low as 0.2 dB/km in optical fiber cables, allowing transmission 

over long distances without the need for repeaters. 

Electrical insulator 

Optical fibers do not conduct electricity, preventing problems with ground loops and 

conduction of lightning. Optical fibers can be strung on poles alongside high voltage 

power cables. 

Material cost and theft prevention 

Conventional cable systems use large amounts of copper. In some places, this copper is a 

target for theft due to its value on the scrap market. 

Security of information passed down the cable 

Copper can be tapped with very little chance of detection 

Optical fibers can be used as sensors to measure strain, temperature, pressure and other quantities 

by modifying a fiber so that the property to measure modulates the intensity, phase, polarization, 

wavelength, or transit time of light in the fiber. Sensors that vary the intensity of light are the 

simplest, since only a simple source and detector are required. A particularly useful feature of 

such fiber optic sensors is that they can, if required, provide distributed sensing over distances of 

up to one meter. In contrast, highly localized measurements can be provided by integrating 

miniaturized sensing elements with the tip of the fiber. These can be implemented by various 

micro- and nanofabrication technologies, such that they do not exceed the microscopic boundary 

of the fiber tip, allowing such applications as insertion into blood vessels via hypodermic needle. 

 

Extrinsic fiber optic sensors use an optical fiber cable, normally a multi-mode one, to 

transmit modulated light from either a non-fiber optical sensor—or an electronic sensor 

connected to an optical transmitter. A major benefit of extrinsic sensors is their ability to reach 

otherwise inaccessible places. An example is the measurement of temperature inside aircraft jet 

engines by using a fiber to transmit radiation into a radiation pyrometer outside the engine. 

Extrinsic sensors can be used in the same way to measure the internal temperature of electrical 

transformers, where the extreme electromagnetic fields present make other measurement 

techniques impossible. Extrinsic sensors measure vibration, rotation, displacement, velocity, 

acceleration, torque, and twisting. A solid state version of the gyroscope, using the interference 



 

 

of light, has been developed. The fiber optic gyroscope (FOG) has no moving parts, and exploits 

the Sagnac effect to detect mechanical rotation. 

 

Common uses for fiber optic sensors includes advanced intrusion detection security 

systems. The light is transmitted along a fiber optic sensor cable placed on a fence, pipeline, or 

communication cabling, and the returned signal is monitored and analyzed for disturbances. This 

return signal is digitally processed to detect disturbances and trip an alarm if an intrusion has 

occurred. 

 

Optical fibers have a wide number of applications. They are used as light guides in 

medical and other applications where bright light needs to be shown on a target without a clear 

line-of-sight path. In some buildings, optical fibers route sunlight from the roof to other parts of 

the building. Optical fiber lamps are used for illumination in decorative applications, including 

signs, art, toys and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate 

their crystal showcases from many different angles while only employing one light source. 

Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon. 
 
 

Use of optical fiber in a decorative lamp or nightlight. 

 

Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, 

sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used 

to view objects through a small hole. Medical endoscopes are used for minimally invasive 

exploratory or surgical procedures. Industrial endoscopes are used for inspecting anything hard 

to reach, such as jet engine interiors. Many microscopes use fiber-optic light sources to provide 

intense illumination of samples being studied. 



 

 

In spectroscopy, optical fiber bundles transmit light from a spectrometer to a substance 

that cannot be placed inside the spectrometer itself, in order to analyze its composition. A 

spectrometer analyzes substances by bouncing light off and through them. By using fibers, a 

spectrometer can be used to study objects remotely. 

 

 The propagation of light through a multi-mode optical fiber 

 

 
Specular reflection 

 

 
Diffuse reflection 



 

 

 

Waves and Oscillations 

Periodic & Oscillatory Motion:- 

The motion in which repeats after a regular interval of time is called 

periodic motion. 

1. The periodic motion in which there is existence of a restoring 

force and the body moves along the same path to and fro about a 

definite point called equilibrium position/mean position, is 

called oscillatory motion. 

2. In all type of oscillatory motion one thing is common i.e each 

body (performing oscillatory motion) is subjected to a restoring 

force that increases with increase in displacement from mean 

position. 

3. Types of oscillatory motion:- 

It is of two types such as linear oscillation and circular 

oscillation. 

Example of linear oscillation:- 

1. Oscillation of mass spring system. 

2. Oscillation of fluid column in a U-tube. 

3. Oscillation of floating cylinder. 

4. Oscillation of body dropped in a tunnel along 

earth diameter. 

5. Oscillation of strings of musical instruments. 

Example of circular oscillation:- 

1. Oscillation of simple pendulum. 

2. Oscillation of solid sphere in a cylinder (If 

solid sphere rolls without slipping). 

3. Oscillation of a circular ring suspended on a 

nail. 



 

 

4. Oscillation of balance wheel of a clock. 

5. Rotation of the earth around the sun. 

 

 
Oscillatory system:- 

1. The system in which the object exhibit to & fro 

motion about the equilibrium position with a 

restoring force is called oscillatory system. 

2. Oscillatory system is of two types such as 

mechanical and non- mechanical system. 

3. Mechanical oscillatory system:- 

 In this type of system body itself changes 

its position. 

 For mechanical oscillation two things are 

specially responsible i.e Inertia & 

Restoring force. 

 E.g oscillation of mass spring system, 

oscillation of fluid-column in a U-tube, 

oscillation of simple pendulum, rotation 

of earth around the sun, oscillation of 

body dropped in a tunnel along earth 

diameter, oscillation of floating cylinder, 

oscillation of a circular ring suspended on 

a nail, oscillation of atoms and ions of 

solids, vibration of swings…etc. 

4. Non-mechanical oscillatory system:- 

In this type of system, body itself doesn‟t change its 

position but its physical property varies periodically. 

e.g:-The electric current in an oscillatory circuit, the lamp of a body 

which is heated and cooled periodically, the pressure in a gas through 



 

 

a medium in which sound propagates, the electric and magnetic waves 

propagates undergoes oscillatory change. 

 

 

 

Simple Harmonic Motion:- 

It is the simplest type of oscillatory motion. 

A particle is said to be execute simple harmonic oscillation is the 

restoring force is directed towards the equilibrium position and its 

magnitude is directly proportional to the magnitude and displacement 

from the equilibrium position. 

If F is the restoring force on the oscillator when its displacement 

from the equilibrium position is x, then 

F –x 

Here, the negative sign implies that the direction of 

restoring force is opposite to that of displacement of body i.e towards 

equilibrium position. 
 

F= -kx .................. (1) 

Where, k= proportionality constant called force constant. 

Ma=-kx 
 

M
 
=-kx 
    

 
M kx=0 

    
 

   
+

 
x=0

 

 

    
 ω2x=0 ................. (2) 

    



 

 

√ 

Where ω2=   
  

 
 

Here ω=√  
  
is the angular frequency of the oscillation. 

 

Equation (2) is called general differential equation of SHM. 

By solving these differential equation 

x=            + ........................ (3) 

Where , are two constants which can be determined from the 

initial condition of a physical system. 

Appling de-Moiver‟s theorem 

x=     cos    +isin     ) +     cos --- isin ) 

x=     +    ) cos     +            ) sin 

x= Ccos    +Dsin ................ (4) 

Where C = +   

& D=       
 

Let assume,  

C=A      

D=Acos   
 

Putting these value in equation (4) 

x=A        cos       +Acos     sin 

x=A (        cos                       ) 

x=A sin              ) ................(5) 

Where A= 2+D2) &             
  



 

 

Similarly, the solution of differential equation can be given as 

x=Acos ) ………(6) 

Here  A denotes  amplitude of  oscillatory system,       ) is  called 

phase and is called epoch/initial phase/phase constant/phase angel. 

Equation (5) and (6) represents displacement of SHM. 

Velocity in SHM:- 
 

 =Asin ) 
 

   
=A cos ) 

   

v=A  cos              ) .................. (7) 

The  minimum value of v is 0(as minimum value of Asin           )=0  

& maximum value is A . The maximum value of v is called velocity 

amplitude. 

Acceleration in SHM:- 

a= -A  2sin              ) .................. (8) 

The  minimum  value  of  „a‟  is  0  &  maximum  value is A .. 2. The 

maximum valueof „a‟ is called acceleration amplitude. 

Also, a= 2x (from equation (5)) 

a –y 

It is also the condition for SHM. 

Time period in SHM:- 

The time required for one complete oscillation is called the time 

period (T). It is related to the angular frequency( ) by. 

T= ............................. (9) 
  



 

 

  

  

Frequency in SHM:- 

The number of oscillation per time is called frequency or it is the 

reciprocal of time period. 

ʋ= =   ……………(10) 
 

Potential energy in SHM:- 

The potential energy of oscillator at any instant of time is, 

U=-∫
  
    

=-∫
 
         

 

= 2 
  

 
=       2sin2              ) .................. (11) 
  

 

(By using equation (5)). 

Kinetic energy in SHM:- 

The kinetic energy of oscillator at any instant of time is, 

K= )2 

= v2 
  

 
K= A2ω2 cos2 ) ……. (12) 

  

(By using equation (7)) 

Both kinetic and potential energy oscillate with time when the kinetic 

energy is maximum, the potential energy is minimum and vice versa. 

Both kinetic and potential energy attain their maximum value twice in 

one complete oscillation. 

Total energy in SHM:- 



 

 

Total energy= K.E+P.E 
 

= A2ω2 cos2 ) +   

 

  2sin2 ) 
  

 
= 2cos2 ) +  
    

  
 

  2sin2 ) 

Total energy =  
  
  2 

Total energy = A2ω2 
  

The total energy of an oscillatory system is constant. 

Graphical relation between different characteristics in SHM. 



 

 

 



 

 

 
 

COMPOUND PENDULUM (Physical pendulum):- 

Compound /physical pendulum is a rigid body of any arbitrary shape 

capable of rotating in a vertical plane about an axis passing through 

the pendulum but not through the pendulum but not through centre of 

gravity of pendulum. 

The distance between the point of suspension the centre of gravity is 

called the length of length of the pendulum &denoted by 

When the pendulum is displaced through a angle θ from the mean 

position,a restoring torque come to play which tries to bring the 

pendulum back to the mean position .But the oscillation continues due 

to the inertia of restoring force. 
 



 

 

Here the restoring force is -mgsinθ. So the restoring torque about the 

point of suspension “O” is 

τ=-mg sinθ . 

If the moment of inertia of the body about “OA” is “I”, the angular 

acceleration becomes, 

α=τ/I 

α= ............................................ (1) 

For very small angular displace “θ “, we assume that 

Sin θ~θ. 

So, α=-mglθ/I. 

α=-(mg /I) θ ............. (2) 

Also α=d2θ/dt2 

Now we can write 

d2θ/dt2+ ( mg  /I) θ =0 ..................... (3) 

d2θ/dt2+ω2θ=0 ..................... (4) 

Where, ω2= mg /I. And eqn(4) is the general equation of simple 

harmonic. 

T=2π(I/mg )1/2 

T=2π( M(k2 +L2)/Mg )1/2. 

T=2π( (K2/l+l)/g)1/2 ............................................ (5). 

 
Here + =L, Called as equivalent length of pendulum.. 

  

If  a  line which   is   drawn  along the  line  joining the point of 

suspension  & Centre of gravity by the distance “ k2/l”.we have 



 

 

another Point on the line called centre of Oscillation is equivalent 

Length of pendulum . 

So,the distance between centre of suspension & centre of Oscillation 

is equivalent length of pendulum .If these two points are interchanged 

then “time period” will be constant. 

L.C CIRCUIT(NON MECHANICAL OSCILLATION ):- 
 

 

 

 

 

 

 

 
In this region,it is combination “L” &”C” with the DC source through 

the key.If we Press the Key for a while then capacitor get charged & 

restores the charge as “+Q” and”-Q” with the potential “v=q/c” 

between the plates .When the switch is off the capacitor gets 

discharged. 

As capacitor gets discharged, q also decreases. So, current at that 

situation is given by 

I=dq/dt. 



 

 

As q decreases, electric field energy (Energy stored in electric field ) 

gradually decreases .This energy is transferred to magnetic field that 

appears around the inductor. At a time,all the charge on the capacitor 

becomes zero,the energy of capacitor is also Zero. Even though q 

equals to zero,the current is zero at this time. 

Mathematically, Let the potential difference across the two plates of 

capacitor at any instance” V” is given by 

V=q/c… ....................... (1) 

In the inductor due to increases in the value of flow of current, the 

strength of magnetic field ultimately the magnetic lines of force cut/ 

link with inductor changes. So a back emfdevelops which is given by 

ε =-L........................ (2) 
   

Now applying KVL to this LC circuit, 

+v-ε=0 
 

 
+L

  
=0 

 

  
+

     
=0

 

 

   
+ =0………………………..(3). 

 

This represents the general equation of SHM, 

Here there is periodic execution of energy between electric field of 

capacitor & magnetic field of inductor. 

Here this LC oscillation act as an source of electromagnetic wave. 

Here, ω2= ⁄   



 

 

ω= ⁄ 
 

√ 
 

T=2π√   

Damped oscillation:- 

For a free oscillation the energy remains constant. 

Hence oscillation continues indefinitely. However in real fact, the 

amplitude of the oscillatory system gradually decreases due to 

experiences of damping force like friction and resistance of the media. 

The oscillators whose amplitude, in successive 

oscillations goes on decreasing due to the presence of resistive forces 

are called damped oscillators, and oscillation called damping 

oscillation. 
 

The damping force always acts in a opposite 

directions to that of motion of oscillatory body and velocity 

dependent. 
 

Fdam –v 

Fdam=-bv 

b= damping constant which is a positive quantity defined as 

damping force/velocity, 

Fnet = Fres+ Fdam 

Fnet= -kx –bv 

F = -kx– b   
net 

 

M
 
+kx+ b

 
= 0 

 

   
+

 
+

 
x = 0

 



 

 

   
+2β

 
+ω

 
 

  

2
x = 0 .................. (2) 

0 
 
 

 

Where β= is the damping co-efficient & ω 
 

 

=√ is 
 

 

   0
 

called the natural frequency of oscillating body. 
 

The above equation is second degree linear homogeneous equation. 

The general solution of above equation is found out by assuming x(t), 

a function which is given by 

x(t) = A    

    
= A = x 

   
      

= Aα2 = α2x 
    

Putting these values in equation 

α2x + 2α2βx + ω0
2x =0 

α2 + 2α2β + ω0
2 =0 ................. (3) 

 

α = -β±√ ω0
2, is the general solution of above 

quadratic equation. 

As we know, 

x(t) =A1
 + A2    

 

x(t) = A1 
( √ ) + A2 

( √ )  

 

x(t) = (A1 
√ + A2

 √ ) … (4) 

Depending upon the strength of damping force the quantity (β2-ω0
2) 

can be positive /negative /zero giving rise to three different cases. 

Case-1:- if β ω0
2 underdamping (oscillatory) Case-

2:- if β ω0
2 overdamping (non-oscillatory) 



 

 

0 

0 

0 

1 

0 0 

1 2 

1 1 

1 2 1 

0 1  1 

1 

1 

Case-3:- if β ω 2 critical damping (non-oscillatory) 

Case-1: [Under damping ω 2 β2] 

If β2 ω 2, then β2- ω 2= -ve 
 

let β2-ω 2=-ω2   √    =i ω 

whereω1= √ ω 2- β2 = Real quantity 

So the general equation of damped oscillation/equation (IV) becomes 

X (t) = e
-βt 

(A1e
iω t 

+A e
-iω

1
t
) 

By setting 

A1=r/2eiθ and A2= r/2e-iθ, 

X(t)= e-βt[r/2e
i(θ+ω t)+ r/ e-i(θ+ω t)] 

=re-βt[ei(θ+ω t)+ e-i(θ+ω t)]/2 

X(t)= re-βt cos(θ+ ω t)………(v) 
 

Here cos(θ+ ω t) represents  the  motion  is  oscillatory having  angular 

frequency „ω ‟ .The constant „r‟ and ‟ θ‟ are determined from  initial 

potion & velocity of oscillatior 

T1=2π/ ω1 

T1=2π/√ ω0
2- β2……(vi) (time period of damped oscillator) 

T1  T (where T= time period of undamped oscillator 

Implies f1 f 

Frequency of damped oscillator is less than that of the 

undamped oscillator. 

In  under  damped  condition  amplitude  is  no  more constant and 

decreases exponentially with time, till the oscillation dies out. 



 

 

  

Mean life time:The time interval in which the oscillation falls to 1/e 

of its initial value is called mean life time of the oscillator. (τ) 

1/e a= a e-βτm = , 
  

 

   -β =loge1/e  
     =  

  
 

 
 
 

 

Velocity of underdamped oscillation: 

X(t)=r cos(ω1t+ θ) 
 

  r[-βe-βt cos(ω 1t+ θ)-e-βtω1 sin( ω 1t+ θ) 
 

     = v=-re-βt[βcos(ω 
   

Now , x=0& t=0, 

X(t)= re-βt cos(ω1t+ θ) 

  0 = re0 cos(0+ θ) 

 0 = cosθ 

1t+ θ)+ω1 sin( ω 1t+ θ)…(vi) 



 

 

  

 

 

 

  = -r ω1 

      
 

 
  

Using the value of θ & t=0 in the equation (vii) we have 

 

 
Where value of V0 in …………… 

 

Calculation of Energy(instantaneous): 
 

K.E = mv2 
  

K.E = mv2 [β2cos2(ω 
  

Potential Enegy: 
 

P.E= kx2 
  

1t+ θ)+ ω 
2
sin2(ω 1t+ θ)+ βω 1sin2(ω 1t+ θ)] 

 

 

Total Energy: 

T.E=K.E+P.E 

= kr2 cos2 (ω 
  

1t+ θ) 

 

= [( mv2+ kr2)cos2(ω 
 

  

t+θ)+ mr2ω 2sin2(ω 
 

 

t+θ) 
1 1 1 

     mv2 βω 
  

1sin2(ω 1t+ θ)] 
 

Total average energy: 
 

     = mr2 ω 
  

2        
0 

=E0 
     

Where, E0 =Total energy of free oscillation 

The average energy decipated during one cycle 

         =Rate of energy 

1 



 

 

0 

= 
  
   

 

=    

Decrement 
 

The decrement measures the rate at which amplitude dies 

away. 
 

The ratio between amplitude of two successive maxima, is the 

decrement of the oscillator. 

re-βt/ re-β(t+T) = re+βt 

The logarithmic decrement of oscillator is „λ‟ 

   loga    

        π   /√ ω 2- β2 

     logaa0/a1=loga1/a2= ......... =eβt=    

Rate of two amplitudes of oscillation whichare separated by one period 

Relaxation time( : 

It is the time taken by damped oscillation by 

decaying of its energy 1/e of its initial energy. 

   ε 
  

0=ε 
 
0 
     

  
 
=      
  

 

 Loge-1=log      

 -1=     

   =1/2 =m/b 



 

 

0 

0 

Case-II:(over damping oscillation) 

Here β2 ω 2 

 

= α (say) 

√ β2-ω 2=+ve quantity 

 
 

X (t) = e-βt (A1eαt +A2e-αt)… ........... (viii) 
 

Depending upon the relative values of α, β ,A1 , A2& initial position 

and velocity the oscillator comes back to equilibrium position. 
 



 

 

0 

The motion of simple pendulum in a highly viscous medium is an 

example of over damped oscillation. 

Quality factor: 
 

Q=
      

 π  
     

= 
   

. 
 

 
 
 
 

Critical damping: 

β2 = ω 2 
 

The general solution of equation (ii) in this case, 

X(t) = (Ct+D) e-βt ........................................................ (ix) 

Here the displacement approaches to zero asymptotically for given 

value of initial position and velocity a critically damped oscillator 

approaches equilibrium position faster than other two cases. 

Example: The springs of automobiles or the springs of dead beat 

galvanometer. 



 

 

 

Curves of three Cases: 
 

 

 
Forced Oscillation 

The oscillation of a oscillator is said to be forced oscillator or driven 

oscillation if the oscillator is subjected to external periodic force. 

If an external periodic sinusoidal force „Fcosωt‟ acts on a damped 

oscillator, its equation of motion is written as, 
 

 

 

F = -kx- b +Fcosωt 
net    

 
m

 
+ = -kx –b +Fcosωt 

  

    

 
   

+ +
       

+ 
  

   

 
x = cosωt 

 

 
0 0 + ω 2x = f cosωt 

       
   

+ 2β
   



 

 

0 

c 1 2 

2  ̈ +    ̇+  0 x= f0cosωt 

----------------------------------------------------- (i) 
 

Where β=    , ω 2= 
  and f = , and β and ω 

 
 

2 
respectively called as 

0 0 0 

damping coefficient, natural frequency. 

Equation (i) is also represented as 

 

 
Equation (i) represents the general equation of forced oscillation. 

Equation (i) is a non-homogenous differential equation with constant 

co-efficient. For weak damping (ω 2 >β 2) , the general equation 

contains, 

x(t) = xc(t) + xp(t) 

Where xc(t) is called complementary solution and its value is 

x (t)=           A    √               
   
+A    √              

   
) ........................ (ii) 

Now xp(t) is called the particular integral part. 

Let us choose 

xp(t) = P cos (ωt-δ) 

 ̇(t)= -Pωsin(ωt-δ) 

 ̈(t)=-Pω2cos(ωt-δ) .................................... (iii) 

 
Putting xp(t) , ̇    ,  ̈(t)  in  eqn (i) we get 

- Pω2cos (ωt-δ)-2βPω sin (ωt-δ) + ω0
2Pcos(ωt-δ) = f0cosωt 

- Pω2cos (ωt-δ)-2βPω sin (ωt-δ) + ω0
2Pcos(ωt-δ) = f0cos (ωt-δ + δ ) 



 

 

0 0 

0 0 

0 0 

      

p 

- Pω2cos(ωt-δ)-2βPω sin(ωt-δ) + ω  2Pcos(ωt-δ) = f [ cos (ωt-δ ) .cos 

δ – sin(ωt-δ ) .sinδ ] 

Now, compairing the coefficient of cos(ωt-δ) and sin (ωt-δ) on both 

sides, 

(ω 2-ω2)P = f cosδ .................................................... (iv) 

2βPω = f0sinδ ................................................................ (v) 

Squaring and adding eqn (iv) & (v) 

{(ω 2-ω2)P}2 +4 β2 P 2ω2 =f 2 
 

P =    …………………(vi) √ 
( ) 

 

Now dividing eqn (v) by (iv) 
 

δ= (      
  

) .................................. (vii) 

x  =    √ 

 

cos(ωt-δ) (steady state solution) 
( ) 

 

Now, x(t) = xc(t) + xp(t) 
 

x(t) = A 
 

  

 √                 + A     √                   ) + 
   cos(ωt- 

1 2 √ 
( ) 

δ) 

Steady state behavior: 
 

Frequency:-The Oscillator oscillates with the same frequency as that 

of the periodic force. 

ω0and ω are very close to each other then beats will be produced and 

these beats are transient as it lasts as long as the steady state lasts. The 

duration between transient beats is determined by the damping 

coefficient „β‟. 



 

 

      

Phase: The phase difference „δ‟ between the oscillator and the driving 

force or between the displacement and driving is 
 

δ=         (         ) 
  

 

This shows that there is a delay between the action of the driving 

force and response of the oscillator. 
 

(In the above figure fQ= ω0 and fp= ω ) 

At ω=ω0 , φ₌ , the displacement of the oscillator lags behind the 
  

driving force by . 
  

At ω<<ω0 then δ=0→ δ=0 
 

For ω>> ω0 then δ =- → -0=  
  

 

Amplitude: The amplitude of driven oscillator , in the steady state , 

is given by 

A=
   

= 
   √ √ 

(              ) (              ) 



 

 

0 

  

  

0 0 

   

  
    A = 

  
    

  
A = 

It depends upon (ω 2-ω2). If it is very small, then the amplitude of 

forced oscillation increases. 

Case-1: At very high driving force i.e ω>>ω0 and damping is small 

(β is small) or ( β→0) 

A =    
√     

 
A =     

  
 

 
 

Amplitude is inversely proportional to the mass of the oscillator & 

hence the motion is mass controlled motion. 

Case-2: At very low driving force (ω<<ω0) and damping is small 

( β→0), 

i.e. ω 2 - ω2 ω 2 

A =    

√   

 

A =     

  
 

 
 

So, when the low driving force is applied to oscillator, the 

amplitude remains almost constant for low damping. The 

amplitude of the forced oscillator in the region ω<<ω0and β< ω0 

is inversely proportional to the stiffness constant (k) and hence 

motion is called the stiffness controlled motion. 



 

 

  

  

0 

0 

Case:-iii (Resistance controlled motion) 

When angular frequency of driving force=natural 

frequency of oscillator i.e.(ω=ω0) 
 

A=f0/√ =f0/2βω 

A=f/bω=f/bω0 

RESONANCE:- 

The amplitude of vibration becomes large for small damping(β is less) 

and the maximum amplitude is inversely proportional to resistive term 

(b) hence called as resonance. It is the phenomenon of a body setting 

a body into vibrations with its natural frequency by the application of 

a periodic force of same frequency. 

If the amplitude of oscillation is maximum when the driving 

frequency is same as natural frequency of oscillator. (I.e. ω =ω0). 

„A‟ will be the max. Only the denominator of the expression 
 

√ is minimum i.e. 

 
 

[√ =0 
 

=>-4ωω 2+4ω3+8β2ω=0 

=>-ω 2+ω2+2β2=0 
 

=>ω= √                       =ω0√             
 

It is the value of angular frequency, where „A‟ will be maximum in 

presence of damping force 

But when damping is very small, 

ω=ω0 (β→0) 

The max value of „A „when damping is present 



 

 

  

  

  

0 

 
 

A=f0/√                       
 

=f0/√                                     
 

 

=f0/√                    

 

=f0/√               
 

Amax=f0 √ =f/2mβ√           
 

This is called amplitude Resonance. 

Value of the frequency at which amplitude resonance occurs i.e. 

amplitude becomes maximum. 

Β1<β2 fr=ω/2π 

=√ ω2 -2β2)/2π 
 

Damping is small, 

fr=ω0/2π 

Here, fr‟ is called resonant frequency. 

Phase at resonance:- 

Φ=π/2 

Velocity of oscillator is in same phase with the driving force 

.Therefore, the driving force always acts in the direction of motion 

of oscillator. So energy transfers from driving force to oscillation 

are maxim. 

Sharpness of resonance:- 

The amplitude is maximum at resonance frequency which 

decreases rapidly as the frequency increases or decreases from the 

resonant frequency. 



 

 

 
 

 

 

 

 

 

The rate at which the amplitude decreases with the driving frequency 

on either side of resonant frequency is termed as „‟sharpness of 

resonance‟‟. 

Different condition:- 

(i) For ω=ω0 β, the amp. Becomes A=Amax/√2.The width of resonance 

curve i.e. the range of frequency over which the amplitude remains 

more than Amax/√ . 

 ω= (ω0+β)-(ω0-β)=2β 

Thus if β‟ is small, ω is small. 

(ii) For β=0, A→∞ at ω=ω0. 

(iii) If there is small „β‟, amp. Resonance occurs lesser value amp is max at 

ω=ωr. 

(iv) If β‟‟is high, A‟ is max but the peak moves towards left &max. amp 

decreases. 

(v) So resonance is sharp for low „β‟ & flat for high „β‟. 



 

 

    0 V=ωf /√                                        

  

  

  

 
 

 

 

 

 

 

Velocity:- 
 

X=xp=f0/√                                     
 

V=-ωf0/√                                    
 
 
 

 

Vmax=ωf0/√                     

*here also „v‟is max. When ω0=ω. 

(Vmax.amp)=f/b 

Calculation of energy:- 
 

x=    cos( ) √ 
( ) 



 

 

  

   

A 

  

  

Where  =A √ 
( ) 

 

V= 
    cos(pt-δ+π/2) √ 

( ) 
 

Average potential energy:- 
 

P.E= kx2 
  

=  k   cos 
2
(ωt-δ) √ 

( ) 
 

= kA2cos2(ωt-δ) 
  

<P.E>= kA2 
  

 
 
= mω 
  

 
 
 
 
2 2 

0 

(average of cos2θ=1/2) 
 

Average kinetic energy:- 
 

K.E= mv2 
  

 
2 

= m cos (ωt-δ+π/2) 
( )        

 

=
  
  

 
mω2A2cos2(pt-δ+π/2) 

<K.E>= mω2A2 
  

Total average energy:- 

    =                      

 
=

 
m +

 
m  

    



 

 

 
 

POWER:- 
 

i). Power absorption: 

             

= F Cos (              
 

√   
               

 
= A F Cos (                       

 
 
                ⁄   

= 
  
  

 

  = 
  
      

    
                

 
= m A2 2 

 
absorbed when         

      
   

  
    

   
 

 

     
   = 

  
  

 

   

ii). Power dissipation: 

                Or                              

= + b.        
   

= + b    

     = 2m ( ⁄    
 

      
       ( ) 

  

  
    = m (  

          



 

 

   
Q =    

 = 2m ⁄   

                  
 

Thus in the steady state of forced vibration, the average rate of power 

supplied by the forcing system is equal to the average of work done 

by the forced system against the damping force. 

QUALITY FACTOR:- 
 

Quality factor is a measure of sharpness of resonance. 

Q- Factor is defined as, 

Q = 2     
                                

                                    
 

= 2         
      

  
    ( ) 

= 2          
 
 

       

 

=
 ( ) 

= 
( ) 

 
 

At , for weak damping 

 

Q =  
   

  
       

 

=> 
 

 

 
 

 Small, Q  Large, sharpness of resonance is more. 



 

 

= 

   

   
  

Q 

                   

                         

Again, 
 
 

 

Larger value of Quality factor (less , sharper is the resonance. 
 
 

System Q value 

Earthquake 250 – 

1400 

Violin string 103 

Microwave 

resonator 

105 

Crystalosill 106 

Excetetation 108 

 

 

 

 

 

 
 

Amplitude Resonance Velocity Resonance 



 

 

1. In amp. Resonance, the amp. 

of oscillator is maximumfor 

a particular frequency of the 

applied force. 

2. Amplitude resonance occurs 

at ⁄  

3. At applied frequency     

   the amp. of the freq. 

oscillator is F/k 

4. The phase of the forced 

oscillator with respect to that 

of applied force is ⁄  

1. The velocity amplitude of the 

forced oscillator is the 

maximum at a particular 

frequency of applied force. 

2. Velocity resonance occurs at 

       

3. Applied  frequency  the 

velocity amplitude is zero. 

4. Phase of the forced oscillator 

with respect to that of applied 

force is …. 

 

 

Mechanical Impedance 

The force required to produce unit velocity is called the mechanical 

impedance of the oscillator. 

      ⁄  
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(( ) ) 

=>    
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= 2
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For a particular    

 

 
INTERFERENCE 

Coherent Superposition: 

The superposition is said to be coherent if two waves having constant 

phase or zero phase difference. 

In this case, the resultant intensity differs from the sum of intensities 

of individual waves due to interfering factor. 

i.e. I  I1  I 2 

Incoherent Superposition: 

The superposition is said to be incoherent if phase changes frequently 

or randomly. 

In this case, the resultant intensity is equal to the sum of the  

intensities of the individual waves. 

i.e. I  I1  I 2 

Two Beam Superposition: 

When two beam having same frequency, wavelength and different in 

amplitude and phase propagates in a medium, they undergo principle 

of superposition which is known as two beam superposition. 

A   
  

| | 

 



 

 

Let us consider two waves having different amplitude and phase 

are propagated in a medium is given as 

                          

(1) 

                          

(2) 

Applying the principle of superposition 

             
                                                
                                                    

                                                
                                                      
                        (3) 

Let 

                                
(4) 

and                                 
(5) 

                                                
 

                                             
                       

(6) 

 

Squaring and adding equation (4) and (5) 
                                                          

                                                       
 
 
 
 
 
 A √                                

  

(7) 

We know,     

         



 

 

 

                                        
 

 √ √                 
(8) 

Dividing equation (5) by (4), we get, 

        
                      

                     

Coherent Superposition: 

In coherent superposition, the phase difference remains constant 

between two beams. 

                              

                      

Now equation (7) and (8) becomes, 

    √                  
 

                

                        and √     
 

 √ √     

The two beams having same amplitude, 

            

               

             

Again, if                     

       √                  
 

                 
 

               √     
 

        √ √     

For same amplitude, 

          

           



 

 

    

Incoherent Superposition: 

In incoherent superposition the phase difference between the waves 

changes frequently or randomly, so the time average of the interfering 

term √ ) vanishes as the cos value varies from -1 

to 1. 
Here, √         

  

             
Multiple beam superpositions: 

When a number of beams having same frequency, wavelength and 

different amplitude and phase are undergoing the superposition, such 

superposition is known as multiple beam superpositions. 

Let ,  ,  ,  .............  be  the  number  of  beams  having  same frequency, 

wavelength and different in amplitude and phase are propagating in a 

medium are given as, 

                          

                          

: 

: 
: 

 

                           
According to principle of superposition, 

      , , , .............   
  

  ∑    

    

  

  ∑                      
    

          ∑  (1) 
 

where resultant amplitude of the ith component. 

     Phase of the ith component. 



 

 

    

    

  

  

  

  

 I  N I 

    

          ∑  

          ∑  

          (2) 

          (3) 
 

Squaring and adding (2) and (3) we get, 
 

      ∑ ∑                   
 

 

The phase angle is given as, 
  
    

 

  
    

Coherent Superposition: 

In this case the phase difference between the waves remains constant 

i.e.                     
 

  ∑ ∑      
 

 

If all the beams having equal amplitudes. 

i.e.                       

 
                     

 

Now,         

 
           

 

2 

coherent 1 

Incoherent Superposition 

In incoherent superposition, the phase difference between the beams 

changes frequently or randomly due to which the time average of 

factor     ∑ vanishes as cos value varies from- 

1 to +1 

∑ 

∑ 



 

 

  

I  KA 

  

  

∑                       

    

  

        ∑    

 
Now , 

 
   ∑  

    
 

2 

incoherent 

  

   

 

       

 
 I  NI 

 

 

 N 




Icoherent 

 

incoherent 1 
Iicoherent 

Interference: 

The phenomenon of modification in distribution of energy due 

to superposition of two or more number of waves is known as 

interference. 

To explain the interference, let us consider a monochromatic source 

of light having wavelength and emitting light in all possible 

directions. 

According to Huygens‟s principle, as each point of a given wavefront 

will act as centre of disturbance they will emit secondary wave front 

on reaching slit S1 and S2. 

As a result of which, the secondary wave front emitted from slit S1 

and S2 undergo the Principle of superposition. 
 

 



 

 

 

 

 

 

During the propagation, the crest or trough of one wave falls upon the 

crest and trough of other wave forming constructive interference, 

while the crest of one wave of trough of other wave producing 

destructive interference. 

Thus, the interfering slit consisting of alternate dark and bright 

fringes, which explain the phenomenon of interference. 

Mathematical treatment: 

Let us consider two harmonic waves of same frequency and 

wavelength and different amplitude and phase are propagating in a 

medium given as 
 

            

                          

                                             

                                        

Let                       

                  

                                    

                  

Squaring and adding (2) and (3) 

                                              

                            
 

* √ + 



 

 

As, I     

        

                           
 

[ √ √ ] 

Dividing equation (3) by (2) we get, 

        
        

            
 
 

 

Condition for maxima: 

The intensity will be maximum when the constructive interference 

takes place i.e. 

           

                

          , n=0, 1, 2... 

 
  

   
                             

  

           

  [        
 

] 

The constructive interference is when     difference is even multiple of 

    or  integral   multiple  of  2      and  path  difference  is  an   integral 

multiple of . 
  

 

Now, [ √ ] 



 

 

    

 
  

[ √ √ ] 

                
 

If the waves having equal amplitude, 

 

             

            

 

         

 
       

 
            ] 

 

Condition for minima 

 

The intensity will be minimum destructive interference takes place 

i.e.            

                  Where n = 0, 1, 2, 3... 

 
  

   
                    

  

  [               
 

] 

Thus destructive interference takes place when phase difference is 

odd multiple of and path difference is odd multiple of . 
  

 

Now,  [                                       √       ] [ √ 

√ ] 



 

 

               
 

Intensity distribution curve 

 

If we plot a graph between phase difference or path difference along 

X-axis and intensity along Y-axis, the nature of the graph will be 

symmetrical on either side. 

 

 

 

 
 

 

From the graph, it is observed that, 

 

1) The fringes are of equal width 

 

2) Maxima having equal intensities 

 

3) All the minima‟s are perfectly dark 

 

The phenomenon of interference tends to conservation of energy i.e. 

the region where intensity is 0, actually the energy present is maxima. 

As the minima‟s and maxima position changes alternatively so the 

disappearance of energy appearing is same as the energy appearing in 

other energy which leads to the principle of conservation of energy. 



 

 

 

Sustained Interference 

The interference phenomenon in which position of the maxima and 

minima don‟t changes with time is called sustained interference. 

Condition for Interference 

1) The two waves must have same frequency and wavelength. 

2) The two source of light should be coherent. 

3) The amplitude of wave may be equal or nearly equal. 

Condition for good Contrast 

I. The two slit must be narrow. 

II. The distance between the two slit must be small. 

III. The background should be perfectly dark. 

IV. The distribution between the slit and the screen should be large. 

V. The two waves may have equal or nearly equal amplitude (for 

sharp superposition). 

Coherent Sources 

The two sources are said to be coherent if they have same phase 

difference, zero phase difference or their relative phase is constant 

with respect to time. 

Practical resolution of Coherent 

Coherent sources from a single source of light can be realised as 

follows 

A narrow beam of light can be split into its number of component 

waves and multiple reflections. 



 

 

Component light waves are allowed to travel different optical path so 

that they will suffer a path difference and hence phase difference. 

[            
  

           ] 
  

Methods for producing coherent sources/Types of interferences 

Coherent sources can be produced by two methods 

1) Division of wave front 

2) Division of amplitude 

Division of Wave front 

The process of coherent source or interference by dividing the wave 

front of a given source of light is known as division of wave front. 

This can be done by method of reflection or refraction. In this case a 

point source is used. 

 

 
 

Examples 

1. YDSE 

2. Lylord‟s single mirror method 

3.Fresnel‟s bi-prism 

4.Bilet splitting lens method 

DIVISION OF AMPLITUDE 

The process of obtaining a coherent source by splitting the amplitude 

of light waves is called division of amplitude which can be done by 

multiple reflections. 

In this case, extended source of light is used. 



 

 

1.Newton‟s ring method 

2.Thin film method 

3. Michelson‟s interferometer 

Young’sDouble Slit Experiment: 
 

 

 

In 1801 Thomas Young demonstrated the phenomenon of interference 

in the laboratory with a suitable arrangement. It is based on the 

principle of division of wavefront of interference. The experiential 

arrangement consists of two narrow slits, S1 and S2 closely spaced, 

illuminated by a monochromatic source of light S. A screen is placed 

at a distance D from the slit to observe the interference pattern. 

In the figure, 

d Slit separation 

D Slit and screen separation 

  Wavelength of light 

Y distance of interfering point from the centre of slit 

x Path difference coming from the light S1 and S2 

Optical path difference between the rays coming through 

S1 and S2 



 

 

  

  

  

    

Now the path difference, 

               

In figure,                        

                         
  

 

 
 
 
 
 
 
 
 

Similarly, 

   
  
   

                 
   

 
   

  
   

    [   ] (Using binomial theorem) 
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The alternative dark and bright patches obtained on the interference 

screen due to superposition of light waves are known as fringe. 

Condition for bright fringe 



 

 

The bright fringe is obtained when the path difference is integral 

multiple of  i.e. 

x  n

From equation (4) and (5), we get 
 

 
 

 

 

Where n = 0, 1, 2 …… 
 

Condition for dark fringe 

It will be obtained when the path difference is an odd multiple of λ/2 

i.e. 

     
       
   

From (4) and (6), we get 

     
  

        
  

    
        

 
 

  

Fringe Width 

  

 

Where n = 0, 1, 2 …… 

 

The separation between two consecutive dark fringes and bright 

fringes is known as fringe width. 

If and be the two consecutive bright fringe. 

              

  
    

  
          

 
 
 
 

  



 

 

  

Similarly, is and be the two consecutive dark fringes. 

               
   
                   

  
 

 
 

 
 
 
 
 

 
 

It is concluded that the separation between the two consecutive bright 

fringes is equal to the consecutive dark fringes. 

So       
 

Hence bright and dark fringes are equispaced. 

Discussion: 

 
From the expression for              

  
 

      
 

      
 

     
 

 
  

If young double slit apparatus is shifted from air to any medium 

having refractive index (µ), fringe pattern will remain unchanged and 

the fringe width decreases (1/µ) as λ decreases. 

        
 

 
 

         

  
 

If YDSE is shifted from air to water, the fringe width decreases3/4 

times width in air. 



 

 

 
 

 

 

 

 

When YDSE is performed with white light instead of monochromatic 

light we observed, 

I. Fringe pattern remains unchanged 

II. Fringe width decreases gradually 

III. Central fringe is white and others are coloured fringes 

overlapping 

When YDSE is performed with red, blue and green light 

               

So                
 

 
 
 
 
 

 

 
  [    

  
] 

  

Wavelength of light in any given medium, decreases to1/µ times of 

wavelength in vacuum. 

     

  
    

 
 
 

So, it decreases 1/µ times. 
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]
 

   



 

 

Newton’s Ring 

The alternate dark and bright fringe obtained at the point of contact of 

a Plano convex lens with its convex side placed over a plane glass 

plate are known as Newton‟s ring as it was first obtained by Newton. 
 

The formation of the Newton‟s ring is based on the 

principle of interference due to division of amplitude. 

Experimental Arrangement 

 

The experimental arrangement consist of 

 
a) S: Monochromatic source of monochromatic light 

b) P: A plane glass plate 
 
 

 

c) L: A convex lens which is placed at its focal length to make the 

rays parallel after refraction 



 

 

d) G: A plane glass plate inclined at on 450 to make the parallel 

rays travel vertically downwards 

e) L‟: A plane convex lens of long focal length whose convex side 

kept in contact with plane glass plate 

f) T: Travelling microscope mounted over the instrument to focus 

the Newton‟s ring. 

Formation of Newton’s Ring 

 

I. To explain the formation of Newton‟s ring, let us consider a 

plano-convex lens with its convex side kept in contact with a 

plane glass plate. 

II. At the point of contact air film is formed whose thickness 

gradually goes on increasing towards outside. 

III. When a beam of monochromatic light is incident on the 

arrangement, a part of it get reflected from the upward surface 

of the air film and the part of light get reflected from the lower 

surface of the air film. 

 

 

IV. The light which reflected from glass to air undergoes a phase 

change of „π‟ and those are reflected from air glass suffers no 

phase change. 



 

 

V. As a result of which they super-impose constructively and 

destructively forming the alternate dark and bright fringe at the 

point of contact. 

Condition for bright and dark fringe in Reflected light 

 

In Newton‟s ring experiment, the light travels from upper and lower 

part of the air film suffers a path difference of λ/2 (phase change of 

π). Again, as the ray of light reflected twice between the air films 

having thickness„t‟. Then the total path travelled by the light is given 

as . 
  

 

Now, from the condition for bright ring, we have, 

 

     
  
     

  

          
 

 
  

              
 

 
  

From the condition for the dark fringe we have, 
 
 

     
  
           

 
 

       
  
                  

  

          

Newton’s ring in transmitted light 

 

The Newton‟s rings obtained in transmitted light are complementary 

to that of Newton‟s ring obtained in reflected light i.e. 



 

 

In transmitted light, the condition for bright ring is, 

        

And for dark ring is, 

              
 

 
  

Newton’s ring in Reflected Light and Transmitted Light 
 

In reflected light In transmitted light 

(a) Condition for bright ring; 

                
  

(b) Condition for bright 

ring; 

        

(c) Newton‟s rings are more 

intense. 

(a) Condition for bright ring; 

        

(b) Condition for dark 

ring; 

                
  

(c) Newton‟s rings are less 

intense. 

 
 

DETRMINATION OF DIAMETER OF NEWTON‟S RING 
 
 

 

LOL‟ is the section of lens placed on glass plate AB. C is the centre 

of curvature of curved surface LOL‟. R is its radius of curvature and r 

is the radius of Newton‟s ring corresponding to film if thickness t. 



 

 

  

From the property of circles, 
 

 

 

 

 

 

t = thickness of air film 

 

 
         (t     

 
 
 

 

From the condition for bright Newton‟s ring, 

 

              
 

 
  

   
 

 
 
 

 
 
 
 
 
 

 

 

                    
 

                   , For the nth ring. 

 
Q) Show that diameter of Newton‟s dark or bright fringe is 

proportional to root of natural numbers. 

 

    √            



 

 

 
 

  √               
 
 

             √         
 
 

      √ , n = 1, 2, 3……. 

 
Thus the diameter of Newton‟s bright ring is proportional to square 

root of odd natural numbers. 

Similarly from the Newton‟s dark ring, 
 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

             
 

        √     
 

  √       √  
 

             √  
 

                 √  
 

    √  

Thus the diameter of Newton‟s dark ring is proportional to square root 

of natural numbers. 



 

 

  

      

Determination of wavelength of light using Newton’s ring method 

 

To determine the wavelength of light, let us consider the arrangement 

which involves a travelling microscope mounted over the Newton‟s 

ring. 

Apparatus, on focusing the microscope over the ring system and 

placing the crosswire of the eye piece on tangent position, the 

readings are noted. On taking readings on different positions of the 

crosswire on various rings we are able to calculate the wavelength of 

light used. 

Let and be the nth and (n+p)th dark ring, then we have, 

 
           

 
                

 
Subtracting equation (1) from (2) we get, 

 
                             

 
 
 
 

 

 

This is the required expression from the wavelength of light for 

Newton‟s ring method. 

If we plot a graph between the orders of ring along X-axis and the 

diameter of the ring along Y-axis, the nature of the graph will be a 

straight line passing through origin. 



 

 

 

 

From the graph the wavelength of light can be calculated the slope of 

the slope of the graph. 

 

Slope of the graph = wavelength of light 
 

 

 

 
 

 

 

 
 

 

 

Determination of refractive index of liquid by Newton’s ring 

 

The liquid whose refractive index is to be determined is to be placed 

between the gap focused between plane convex lens and plane glass 

plate. Now the optical path travelled by the light is to be 2µt, instead 

of 2t where µ be the refractive index of the liquid from the condition 

for the Newton‟s ring we have, 

         
 

   

     
   
     

   

    
   
     



 

 

n 

n air 

n 

 
  

 
 
 

 
 
 
 
 

 
 

For nth ring,            
  

 

Let and be the diameter of the (n+p)th and nth dark ring in 
 

presence of liquid then 
 

 
D'2  

4n  pR and D'2  
4nR 

n p 
 

n 





Now , 
 

 
D'2 - D '2 = 4n  pR - 4nR = 4 pR (1) 

n p n 
  





If the same order ring observed in air then 
 

2 

n p  D2  4 pR (2) 

 

Dividing equation (2) by (1) ,we have 
 

  




2 

n p 
 D 

2 




'2 n p 
 D'2 

liquid 

 

This is the required expression for refractive index of the liquid. 
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DIFFRACTION 

Fundamental Idea about diffraction: 

 The phenomenon of bending of light around the corner of an 

aperture or at the edge of an obstacle is known as diffraction 

 The diffraction is possible for all types of waves 

 The diffraction verifies the wave nature of light 

 Diffraction takes place is due to superposition of light waves 

coming from two different points of a single wave front 

 Diffraction takes place when the dimension of the obstacle is 

comparable with the wavelength of the incident light. 

Explanation of diffraction: 

To explain diffraction, let us consider an obstacle AB is placed 

on the path of an monochromatic beam of light coming from a source 

„S‟ which produces the geometrical shadow CD on the screen. This 

proves the rectilinear propagation of light. 
 



 

 

If the dimension or size of the obstacle is comparable with the 

wave length of the incident light, then light bends at the edge of the 

obstacle and enters in to the geometrical shadow region of the 

obstacle. According to Fresnel inside a well region, the destructive 

interference takes place for which we get brightest central maxima, 

which is associated with the diminishing lights on either side of the 

shadow as the constructive interference takes place out side the well 

region. This explains the diffraction phenomena. 

Types of Diffraction: 

Depending on the relative position of the obstacle from the source and 

screen, the diffraction is of 2 types. 

a. Fresnel Diffraction 

b. Fraunhoffer Diffraction 
 

 

 
 

Fresnel’s Diffraction Fraunhoffer Diffraction 

(1) The type of diffraction 

in which the distance of 

either source or screen or 

both from the obstacle is 

finite, such diffraction is 

known as Fresnel‟s 

diffraction. 

(2) No lenses are used to 

make the rays converge or 

parallel. 

(3) The incident wave 

front is either cylindrical or 

spherical. 

Ex:The diffraction at the 

straight edge. 

(1) The type of diffraction 

in which the distance of 

either source or screen or 

both from the obstacle is 

infinite, such diffraction is 

known as Fraunhoffer 

diffraction. 

(2) Lenses are used to 

make the rays converge or 

parallel. 

(3) The incident wave 

front is plane. 

Ex:. The diffraction at the 

narrow. 



 

 

 

 

 

 

Fraunhoffer Diffraction due to a single slit: 

Let us consider a parallel beam of monochromatic light 

inside on a slit „AB‟ having width „e‟. The rays of the light 

which are incident normally on the convex lens „L2‟, they are 

converged to a point „P0‟ on the screen forming a central bright 

image. 
 

Fraunhoffer diffraction due to single slit 



 

 

 
 

Schematic digram for Fraunhoffer diffraction due to single 

slit 

The rays of light which get deviated by an angle „θ‟, they are 

converged to a point „P1‟, forming an image having lens 

intensity. 

As the rays get deviated at the slit „AB‟ they suffer a path 

difference. Therefore path difference, BK = AB Sinθ 

= e sinθ 
 

Therefore, Phase difference = 
2 

e sin




Let us divide the single slit into ‟n‟ no. of equal holes and a be 

the amplitude of the light coming from each equal holes. 

Then Avg. phase difference= 
1 2 

e sin
n 



Now the resultant amplitude due to superposition of waves is 

given as 



 

 



a sin
 nd  

a sin
 n  1 2 

e sin 
 

a sin
  

e sin 



       

R 
 2  =  2  n   =    

sin
 d 






 1 2 
e sin 







sin
 1  

e sin 





 
2 


 n     
n  


  sin   

 2 
 

Let   
 

e sin ,then 


R  
a sin 

sin 



n 
 

Since  is very small and n is very large so 

small. 

 
is also very 

n 

Therefore, sin 
 
 



n 

Thus, R = a sin


n 

n 
 

 
na sin 






 Asin 






whereA  an 

 

Now the intensity is given as 

A
2 
sin 

2 




sin 

2 
Iα R2  I  KR

2 
 I  K = I where I  KA 

  

 2 0 
 2 0 

 

Condition for Central /principal maxima: 

When α = 0, 

 
 

e sin  0  sin  0 




   0 

Thus, the condition for principal maxima will be obtained at 

  0 position for all the rays of light. 

Position for/Condition for minima: 
 

The minimum will be obtained when 

 sin  sin m 

sin  0  sin(m ) 





 

 



   m

 
 

e sin  m


 e sin  m

    
m


e 

 

 

 
where 

 

 

 

 
m  1,2,3,4,....... 

 

Thus, the minimas are obtained at  
 

,2 



e e 

,3 



e 

,4 



e 

 
,........ 

 

 

 

Position/Condition for secondary maxima: 

The maxima‟s occurring in between two consecutive secondary 

maxima is known as secondary maxima. 

The positions for secondary maxima will be obtained as 
 

 
 

 
d 




dI 
 0

 

d


sin 
2  



d 
I 0

 

2   0 



 2I sin  cos  sin  

 0
 

0 
 

  2 





 
 cos  sin =0 

 2 

 

  cos  sin  0 
 

   tan

This is a transdectional equation.It can be solved by graphical 

method. Taking y   and y  tan ,where the two plots are 

interests, this intersection points gives the position for secondary 

maxima. Thus the secondary maxima‟s are obtained at 

  
3 

,  
5 

,  
7 

......... 

2 2 2 





 

 

 
 



2 

 
 

From the expression for amplitude we have 
 

R =
 Asin


 

A 



 3  

 
 5 

 

3! 5! 
 
 7 

7! 


.............




A   2  4 

= x 1 



3! 5! 

 ................ = A, since α ‹‹ 1 




Thus the intensity at the central principal maxima is I0 

Sin 
2 
(
3 

) 

For α= 3

 , I1 =I0 Sin 

2= I0   2 = I 0  
 

2  2  3 
2 22 

 
 



For α= 5
 

, I =I Sin 
2 

= I0 
 

 

Sin 
2 
(
5 

) 
  2 = 

I 0 

 
and so on …… 

2 
2 0 

 2
  5 

2 62 
 
  2 

Intensity distribution curve: 
 

The graph plotted between phase difference and intensity 

of the fringes is known as intensity distribution curve. The 

nature of the graph is as follows: 





 

 

 
 

Intensity distribution curve 

 

 
From the nature of the graph it is clear that 

1. The graph is symmetrical about the central maximum 

2. The maxima are not of equal intensity 

3. The maxima are of not equal width 

The minima are of not perfectly dark 

 
PLANE TRANSMISSION GRATING: 

It is an arrangement consisting of large no.of parallel slits 

of equal width separated by an equal opaque space is known as 

diffraction grating or plane transmission grating. 

Diffraction 

grating 

     Construction:  It  can   be 

constructed by drawing a large no. of rulings over a plane 

transparent material or glass plate with a fine diamond point. 



 

 

Thus the space between the two lines act as slit and the opaque 

space will acts as obstacle. 

N.B.Though the plane transmission grating and a plane glass 

piece looks like alike but a plane transmission grating executes 

rainbow colour when it exposed to sun light where as a plane 

glass piece does not executes so. 

Grating element: 

The space occurring between the midpoints of two 

consecutive slit in a plane transmission grating is known as 

Grating element. It can be measured by counting the 

no. of rulings present in a given length of grating. 

Let us consider a diffraction grating having 

e = width of the slit 

d = width of the opacity 

If “N” be the no. of rulings present in a given length of grating 

“x” each having width (e+d), then 

N (e+d) = x 

 (e  d )  
x
 

N 
 Grating element 

 

 

For example if a grating contain 15,000 lines per cm in a grating 

then the grating element of the grating 

Grating element, (e+d) = 
1 

=0.00016933 cm 
15000 

Diffraction due to plane transmission grating /Fraunhoffer 

diffraction due to N-parallel slit: 

Let us consider a plane wave front coming from an infinite 

distance is allowed to incident on a convex lens “L” which is 



 

 

placed at its focal length. The rays of light which are allowed to 

incident normally on the lens are converged to a point “Po” 

forming central principal maxima having high intensity and the 

rays of light which are diffracted through an angle are “θ” are 

converge to a point “P1” forming a minima having less intensity 

as compared to central principal maxima. Again those rays of 

light which are diffracted through an angle “θ” are undergoes a 

path difference and hence a phase difference producing 

diffraction. 
 

 

 

 

 

 
Let AB- be the transverse section of the plane transmission 

grating 

WW 
' - be a plane wave front coming from infinite distance 

e = width of the slit 

d = width of the opacity 

(e+d) = grating element of the grating 

N = be the no. of rulings present in the grating 

Now the path difference between the deviated light rays is 
 

S2K = S1S2Sinθ 

= 
(e  d)Sin



 

 

2 

I0 2 

Therefore, Phase difference = 2




x S K =
 2 

(e  d )Sin


= 2 (say) 
 

where   
 

(e  d )Sin




Now the resultant amplitude due to superposition of “N” no .of 

waves coming from “N” parallel slit is given as 

R   A 
Sin SinN

 Sin


and intensity is given as 
2 2 2  Sin 

2 Sin 
2 
N Sin 

2 Sin 
2 
N

IR  I  KR  KA 
 2

 

Sin 
2 

 I0 
 2

 

Sin 
2 



where 
Sin2 

=this is contributed due to diffraction at single slit 




and 
Sin

2 
N 

Sin
2 

= this is contributed due to interference at ” N” 

parallel slit 

Position for central principal maxima /condition for central 

principal maxima: 

The principal maxima will be obtained when 

Sin  o  Sin(m ) 

   m

 
 

(e  d )Sin  m


 (e  d )Sin  m


where m  0,1,2,3...... .This is called grating equation or condition 

for central principal maxima. 

Position for minima /condition for minima: 

The minima will be obtained when 



 

 





SinN  o  Sin(n ) 

 N   n

 N 
 

(e  d )Sin  n


 N (e  d )Sin  n



Where n can take all the values except 

 

 

 

 

 

 

n  0,N,2N,3N,.......... 
 

This is the condition for minima due to diffraction at N-parallel 

slit. 

Position/Condition for secondary maxima: 

The maxima‟s occurring in between two consecutive secondary 

maxima is known as secondary maxima. 

The positions for secondary maxima will be obtained as 
 

dI 
 0

 

d


  
d   Sin 

2 Sin 
2 
N 



d 
I0 

 2 
Sin 

2   
 0 




 
Sin 2 Sin N  N cos N sin   sin N cos  

2I0 
 2

 

Sin 

 sin 2 

  0 




 
N cos N sin  sin N cos  =0 

sin
2 







 N cos N sin   sin N cos  =0 



N cos N sin   sin N cos 


 N tan N  tan N


This is a transdectional equation. It can be solved by graphical 

method. Taking y  tan N and y  N tan N ,where the two plots are 

interests, this intersection points give the position for secondary 

maxima.Thus the secondary maxima‟s are obtained at 

  
3 

,   
5 

,   
7 

......... 

2 2 2 



 

 

 
 

Intensity distribution curve: 

The graph plotted between phase difference and intensity 

of the fringes is known as intensity distribution curve. The 

nature of the graph is as follows: 
 

 

 
Characteristics of the spectral lines or grating spectra: 

1. The spectra of different order are situated on either side of 

central principal maximum 

2. Spectral lines are straight and sharp 

3. The spectra lines are more dispersed as we go to the higher 

orders. 



 

 

4. The central maxima is the brightest and the intensity decreases 

with the increase of the order of spectra. 

Missing spectra or Absent spectra: 

When the conditions for minima due to diffraction at 

single slit and condition for central principal maxima due to 

diffraction at N-parallel slit is satisfied simultaneously for a 

particular angle of diffraction then, certain order maxima are 

found to be absent or missed on the resulting diffraction pattern 

which are known as missing spectra or absent spectra. 

Condition for Missing spectra: 

We have, 

The condition for central principal maxima due diffraction at N- 

parallel slit 

(e  d)Sin  m


esin  n


 
(e  d )Sin  

 
m 

 
m 

 

e sin n n 

Special case: 
 

1. If d = e,  
m 
 2  m  2n 

n 
where n  1,2,3,..... 

 

i.e second order or multiple of 2 order spectra will found to be 

missed or absent on the resulting diffraction pattern. 
 

2. If d  
e 

,  
m 
 

3 
 m  1.5n  1 

2 n 2 
 

i.e First order spectra will found to be missed or absent on the 

resulting diffraction pattern. 
 

3. If e  
d 

,  
m 
 3  m  3n 

2 n 



 

 

i.e Third order spectra or multiple of 3 spectra will found to be 

missed or absent on the resulting diffraction pattern. 

Dispersion: 

The phenomenon of splitting of light wave into different order 

of spectra is known as dispersion. 

Dispersive power: 

The variation of angle of diffraction with the wave length 

of light is known as dispersive power. It is expressed as d
d



Where d  1  2 = difference in angle of diffraction and 

d  1  2 =difference in wave length of light 

Expression for dispersive power: 

We have 

(e  d)Sin  m


d 
(e  d )Sin  m 

d

d 
m 

d


 (e  d ) 
d  
Sin   m 

d


 

d d


 (e  d ) cos 
d 

 m 

d


 
d

d
= m 

(e  d ) cos


 
d 

α m 
d



α 1 

(e  d ) 

 

α  1 

cos



 

 

Determination of wave length of light using plane 

transmission grating: 

To determine the wave length of light let us consider a 

plane transmission grating with its rulled surface facing towards 

the source of light perpendicular to the axis of the spectrometer. 

The parallel beam of monochromatic light coming from source 

is allowed to incident on the transmission grating which are now 

defracted by different angle of diffraction.Rotating the telescope 

for different positions of the defracted ray the angles are 

measured. 
 

Using the grating equation , 

(e  d)Sin  m

   
(e  d )Sin

m 

We can calculate the wave length of the monochromatic light. 

Half period zone: 

The space enclosed between two consecutive circles which 

are differing by phase of π or by a path difference of 
 

or a time 
2 

period of 
T 

is known as half period zone. As it was first 
2 

observed by Fresnel, these are also known as Fresnel half period 

zone. 

Construction: 

To construct the half period zone let us consider a plane 

wave front of monochromatic source of light having wavelength 



 

 




λ coming from left to right. Let “P” be a point just ahead of the 

plane wave front at a perpendicular distance “b” from the plane 

wavefront. Taking “P” as centre and radii equal to OM1= 

r1,OM2= r2,OM3= r3…OMn= rn let us divide the plane wave  

front into large no. of concentric circles such that light coming 

from each consecutive half period zone will differ by a phase 

difference of 
 

. 
2 

These alternative circles which are now differing by a phase 

change of π are known as half period zone. These half period 

zones are known as Fresnel half period zone. The Fresnel‟s first 

half period zone is brighter than that of a second half period 

zone and the two half period zone are differ by a phase change 

of π. 

Properties of Half period Zone: 

1. Phase of Half period Zone: Each half period zone are differ 

by a phase change of π 

2. Area of half period zone: 

The space enclosed between two consecutive half period 

zones is called area of Half period zone. 

Let An-1 and An be the area of (n-1) th and nth half period zone 
2  (n 1) 

2 
Then, An-1 = π (OMn-1) = (PM 

2 
 OP

2 
) = b    b

2 
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 2  
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4 

 

 2b 
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2 
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
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2

 

  b(n 1)
 
= π(n-1)bλ 



Since λ  

4 

 

1 so 

 
(n 1)

2  
2

 
 

 

4 



  1 and hence neglected 

and A = π (OM )2= 2 2 = 
 n 

2

 

 

n n  (PM n  OP )  b  
 2 

 b  


= b
2
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n2 2 

4 
 2b

 n


2 

2 
 b  



  2 2 

=   bn
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= πnbλ 


Since λ  
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1 so 



n 
2  

2

 
 

 

4 

 

  1 and hence neglected 

Now the area of the half period zone 

A= An - An-1 = πnbλ- π (n-1) bλ = πbλ 

Thus the area of half period zone is independent of order of zone 

and the half period zones are equispaced 

3. Radius of half period zone: 

We have, 

The area of first half period zone is πbλ 

i.e 

A1= πbλ 

Again, A1= r 
2

 

 r 
2 = πbλ  r 

2 
 b  r  1b

1 1 1 

Similarly, the radius of the second half period zone is r2  2b

and the radius of the third half period zone is r3  3b ,……. 

rn    nb . 

Thus it is found that radius of the half period zone is dependent 

on order of zone and the radius of the half period zone is varies 

directly proportional to the square root of the natural number. 

Factors affecting amplitude of half period zones: 

The factors affecting the amplitude are: 

a. Area of half period zone (directly) 

2 

=



 

 

b. Average distance of half period zone (inversely) 

c. Obliquity factor (directly) 

Mathematically, 

If „R‟ be the radius of the half period zone, then 
RA 

 (1  cos ) 

 
1 

d 
 

 R
 A(1  cos ) 

d 

Expression for amplitude of half period zone: 

Let R1,R2,R3…….Rn be the amplitudes of 1st, 2nd, 3rd,……nth 

half period zone respectively. 

Then the net amplitude due to the entire half period zone is 

given by 
 

R  R1   R2   R3 Rn 

 R1    R2   R3  .Rn 

 
(If n is odd) 

 R1  R2  R3  ........ .Rn1 (If n is even) 

Since R1 R2 , R 2 R3 so we have 

R   
R1   R3  

2 
2
 and R   

R3   R5  

4 
2
 and so on 

R  
 R1  R 

 
 

 
R3   

 R1  R 
 

  

 
R5  




 Rn 




if n is even 
 2  
 2 2   2 

4  ......... 
2    2 


 
 R1  R 

 
 

 
R3   

 R1  R 
 

  

 
R5  




 Rn1 




if n is odd 
 2  
 2 2   2 

4  ......... 
2     2   



R  
R1  

Rn
 if n is odd 

2 2 
 

= 
R1  

Rn1 if n is even 
2 

 
As n 

2 

 
1 and 

 
Rn1 or 

Rn 1 

 

so, 

 
R  

R1
 

2 2 2 



 

 

Thus the net amplitude due to entire half period zone is equal to 

half of the amplitude due to first half period zone. 

Zone plate: 

A special diffracting screen which obstructs the light from 

alternate half period zone is known as zone plate. 

Construction: 

It can be constructed by drawing a series of concentric 

circles on a white sheet of paper with radii proportional to 

square root of natural number. The alternate half period zones 

are painted black. A reduced photograph of this drawing is taken 

on a plane glass plate. The negative thus obtained act as zone 

plate. 
 

Depending on the initial blackening the zone plate is of 

two types 
 

1. Positive zone plate: 2. Negative 

zone plate: the 

the center is bright 

center is dark  

Working: 

When a beam of monochromatic light is allowed to fall on 

a zone plate, the light is obstructed from the alternate half period 



 

 

zone through the alternate transparent zones. So,the rays of light 

differ by a phase difference of π. 
 

 

 

 

 

 

Hence, the resultant amplitude is sum of the individual 

amplitude due to light coming from alternate half period zones. 

Thus for any point object situated at infinite produces a bright 

image at a particular distance which is same as that of image 

produced by a convex lens. Thus a zone plate is equivalent to 

that of a convex lens. 

Theory of zone plate: 

Let us consider a transverse section of a zone plate placed 

perpendicular to the plane of the paper. Let „O‟ be a point object 

placed at a distance „ OP  u ‟ forms a real image „I‟ at a distance „ 

PI  v ‟ from the zone plate. 
 



 

 

 2  2 
2

  
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2 2    2 

 
n 

  

n 

Taking „P‟ as center and radii equal to PM1= r1,PM2= r2,PM3= 

r3…PMn= rn, , the entire plane of the paper is divided into large 

no. of concentric circles such that the light coming from 

alternate half period zone will differ by a path difference of 

such a way that 
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 
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Using eqn (2) and eqn (3) in eqn (1) we get 
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 
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
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
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 rn n 
 

Thus the radius of the zone plate is proportional to square to 

natural number. 

Expression for primary focal length: 

From eqn. (4) we have, 
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 n
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According to sign convention, 
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2 

n      n  f  n 
 

 

(5) 
 f  n



This is the required expression for primary focal length 
 

Again, f 
1

 


 fx = constant 

 

Area of zone plate: 

The space enclosed between two consecutive zones is known as 

area of zone plate. 

Let An-1 and An be the area of (n-1) th and nth zone 

Then A= An - An-1 = r 2  r 2 = uvn 
 
uvn 1 = uv = constat 

n n1 
u  v u  v u  v 

 

Thus, the area of zone plate is independent of order of zone i.e 

the zones are equispaced. 

Multiple foci of zone plate: 

Now from the expression we have, 
 

r 
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n 
 1 

 
1  

 n
  

 


If the object is situated at infinity (∞), then the first image at 

distance , 
 

2 

v1   f 
n




If we divide the half period zones into half period elements 

having equal area, then the 1st half period zone will divided into 

three half period zones,2nd half period zone will divided into five 

half period elements and so on 

The second brightest image will at 
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 v3 f3 f   n  

3  
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The third brightest image will at 
 = 1 

 
1 r 

2
 

 
 

and so on…. 
v5 f5 f   n  

5  
1 

5 n


Thus it is conclude that the zone plate has multiple foci. 

Comparison between the zone plate and the convex lens: 

Similarities 

1. Both form the real image. 

2. The relation between consecutive distances is same for both. 

3. In both the cases focal length depends on wave length of the 

light. 

 

 
Dissimilarities 

 

Convex Lens Zone Plate 

a) Image is formed by 

refraction 

b) It has a single focus. 

c) The focal length increases 

with increase of wave length. 

d) Image is more intense 

e) The optical path is constant 

for all the rays of light. 

a) Image is formed by 

diffraction 

b) It has multiple foci 

c) The focal length 

decreases with increase of 

wavelength 

d) Image is less intense 

e) The optical path is 

different for different rays 

of light 

Phase reversal Zone Plate: 

The zone plate which is constructed in such a way that the 

light coming from two successive zones differ by an additional 



 

 

path difference of λ/2, such zone plate is known as phase reverse 

zone plate. 

Huygens’s Principle: 

About the propagation of the wave, Huygens suggested a theory 

which is based on a principle known as Huygens‟s principle. 

It states that:- 

1) Each point on a given wave front will act as centre of 

disturbances and emits small wavelets called secondary wave 

front in all the possible direction. 

2) The forward tangent envelope to these wave lets gives the 

direction of new wave front. 

Explanation/construction of secondary wave front: 

To explain Huygens‟s principles let us consider a source of 

light emits waves in all directions. Let AB be the wave front 

at t=0. As the time advances each point on the given wave 

front AB will act as centre of disturbance and emit wave lets 

in all possible directions. 
 

 

 
 

Taking a, b, c, d, e as centre and radii equal to „ct‟ (c- 

velocity of light &„t‟ time), we can construct a large number 

of spheres which represents a centre of disturbance for the 

new wave. The length A1B1 represents the direction of new 

wave front. 



 

 

N.B. The backward front is not visible as the intensity of the 

backward wave front is very small since for the backward 

wave front, 

I = k (1+cosθ) since for backward wave 

front (θ=1800) 

I=k (1-1) =0 

Iback=0 

 

POLARISATION 

The phenomenon of restricting the vibration of light in a particular 

direction perpendicular to the direction of wave motion is called as 

polarisation. 

To explain the phenomenon of polarisation let us consider the two 

tourmaline crystal with their optics axis placed parallel to each other 

.When an ordinary light is incident normally on the two crystal plates 

the emergence light shows a variation in intensity as T2 is rotated. 

 

 

The intensity is maximum when the axis of T2 is parallel to that of T1 

and minimum when they are at right angle. This shows that the light 

emerging from T1 is not symmetrical about the direction of 



 

 

propagation of light but its vibration are confined only to a single line 

in a plane perpendicular to the direction of propagation, such light is 

called as polarised light. 

Example: 
 

 

 
Difference between Polarised and ordinary light: 

 

Polarised light Ordinary light 

1. The vibrations are confined 

in a particular direction. 

2. The probability of 

occurrence of vibration 

along the axis of crystal is 

not same in all position of 

crystal 

3. The intensity of light plate  

is not same in all position of 

the crystal plate. 

1. The vibrations of light 

particle are not confined in a 

particular direction. 

2. The probability of 

occurrence of vibration 

along the axis of the crystal 

is not symmetries for all 

position of the crystal. 

3. The intensity of light plate 

is same in all position of the 

plate. 

Polarised light: 

The resultant light wave in which the vibrations are confined in a 

particular direction of propagation of light wave, such light waves are 

called Polarised light. Depending on the mode of vibration in a 

particular direction, the polarised light is three types 



 

 

Linearly Polarised /Plane polarised: 

When the vibrations are confined to a single linear direction at 

right angles to the direction of propagation, such light is called Plane 

polarised light. 
 
 

Circularly polarised light: 

When the two plane polarised wave superpose under certain 

condition such that the resultant light vector rotate with a constant 

magnitude in a plane perpendicular to the direction of propagation  

and tip of light vector traces a circle around a fixed point such light is 

called circularly polarised light. 

 

 

Elliptically polarised light: 

 
When two plane polarised light are superpose in such a way that 

the magnitude of the resultant light vector varies periodically 



 

 

during its rotation then the tip of the vector traces an ellipse such 

light is called elliptically polarised light. 

 

Pictorial representation of polarised light: 

Since in unpolarised light all the direction of vibration at right 

angles to that of propagation of light. Hence it is represented by 

star symbol. 

 

 

 

 
In a plane polarised beam of light, the polarisation is along 

straight line, the vibration are parallel to the plane and can be 

represented by 

 



 

 

 

If the light particles vibrate along the straight line perpendicular 

to the plane of paper, then they can be represented by a dot. 
 

Plane of vibration: 

The plane containing the direction of vibration and direction of 

propagation of light is called as plane of vibration. 

 

Plane of polarisation: 

The plane passing through the direction of propagation and 

containing no vibration is called as plane of polarisation. 

Since a vibration has no component of right angle, to its own 

direction, so the plane of polarisation is always perpendicular to 

the plane of vibrations. 

Angle between plane of vibration and plane of polarisation is 

90˚. 

Light waves are transverse in nature: 

If the light waves are longitudinal in nature, they will show no 

variation of intensity during the rotation of the crystal. Since 

during the rotation of the crystal, the variation in intensity takes 

place, this suggests that light waves are transverse in nature 

rather longitudinal. 

Production of polarised light: 

The polarised light can be produced in four different ways such as 

1. Polarisation by Reflection 

2. Polarisation by Refraction 



 

 

3. Polarisation by Scattering 

4. Polarisation by Double refraction 

1. Polarisation by reflection: 

The production of the polarised light by the method of reflection from 

reflecting interface is called polarisation by reflection. 

When the unpolarised light incident on a surface, the reflected 

light may be completely polarised, partially polarised or unpolarised 

depending upon the angle of incidence. If the angle of incidence is 0° 

or 90° the light is not polarised. If the angle of incidence lies in 

between 0° and 90°, the light is completely plane polarised. 

The angle of incidence for which the reflected component of 

light is completely plane polarised, such angle of incidence is called 

polarising angle or angle of polarisation or Brewster‟s angle .It is 

denoted by ip. 

At ip the angle between reflected ray and refracted or transmitted 

ray is π/2. 

Explanation: To explain the polarisation by reflection, let  us 

consider an interface XY on which a ray AB which is unpolarised is 

incident at an angle equal to polarising angle and get reflected along 

BC which is completely plane polarised and the ray BD which is 

refracted or transmitted is continues to be unpolarised. The incident 

ulpolarised light contain both perpendicular and parallel component  

of light. 



 

 

 
 

The parallel component of light is converted into perpendicular 

component and gets reflected from the interface. The parallel 

component of light is continues to vibrate and get refracted or 

transmitted. As a result of which the reflected component is polarised. 

Conclusion: 

Hence, the reflected ray of light contains the vibrations of 

electric vector perpendicular to the plane incidence. Thus the reflected 

light is completely plane polarised perpendicular to plane of 

incidence. 

Brewster’s Law: 

This law states that when an unpolarised light is incident at polarizing 

angle „ip‟ on an interface separating air from a medium of refractive 

index “µ” then the reflected light is fully polarized. i.e.   tan ip 

To explain Brewster‟s law, let XY be a reflecting surface on which; 

AB = unpolarised incident light 

BC= completely polarized 

BD = partially polarized 

i p =angle of incidence, angle of polarization 

From fig. 
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From Snell‟s law 

  
sin i p =

 

sin r 

sin i p 
 

 

sin(90
0 
 i ) 

= 
sin i p 

cos i p 
= tan ip 

Thus the tangent of the angle of polarization is numerically equal to 

the refractive index of the medium. 

NOTE: We can also prove in case of reflection at Brewster‟s angle 

reflected and refracted ray are mutually perpendicular to each other. 

From Brewster‟s law; 

We have   tan i p  
sin ip 

cos i 
p 

According to Snell‟s law; 

  
sin i p 

sin r 

From above equations 

sin r  cos i  sin r  sin(90
0 
 i )  r  90

0 
 i  r  i  90

0
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CB  BD  CBD  90 

Thus, it is concluded that at polarizing angle or at Brewster‟s angle, 

the reflected light and the refracted light are mutually perpendicular to 

each other. 

2. Polarisation by Scattering: 

When a beam of ordinary light is passed through a  medium 

containing particles, whose size is of order of wavelength of the 

incident light, then the beam of light get scattered in which the light 

particles are found to vibrate in one particular direction . This 

phenomenon is called “Polarisation by scattering”. 



 

 

Explanation: 
 

 

 

To explain the phenomenon of scattering, let us consider a beam of 

unpolarised light along z-axis on a scatter at origin. As light waves are 

transverse in nature in all possible direction of vibration of 

unpolarised light is confined to X-Y plane. When we look along X- 

axis we can see the vibrations which are parallel to Y-axis. Similarly, 

when we look along Y-axis the vibration along X-axis can be seen. 

Hence, the light can be scattered perpendicular to incident light is 

always plane polarized. 

Polarisation by refraction: 

The phenomenon of production of polarised light by the method 

of refraction is known as polarisation by refraction. 



 

 

 
 

To explain the polarization by refraction, let us consider an ordinary 

light which is incident upon the upper surface of the glass slab at an 

polarizing angle i p or Brewster‟s angle  B , so that the reflected light is 

completely polarized while the rest is refracted and partially 

polarized. The refracted light is incident at the lower face at an angle 

„r‟. 
 

Now, 

tan r  
sin r

 
cos r 

 

 
sin r 

sin(90
0 
 r) 

 

 
sin r 

 g 


sin ip 

 

 
 tan r  g 



Thus according to Brewster‟s law, „ r ‟ is the polarizing angle for the 

reflection at the lower surface of the plate. Hence, the light reflected 

at the lower surface is completely plane-polarised, while that 

transmitted part is partially polarised. Hence, if a beam of unpolarised 

light be incident at the polarizing angle on a pile of plates, then some 

of the vibrations are perpendicular to the plane of incidence are 

reflected at each surface and all those parallel to it are refracted. The 

a a 



 

 

net result is that the refracted beams are poorer and poorer in the 

perpendicular component and less partially polarised component. 

Malus law: 

It states that when a beam of completely plane polarized light 

incident on the plane of analyser, the intensity of the transmitted light 

varies directly proportional to the square of the cosine of the angle 

between the planes of the polariser and plane of the analyser. 

Mathematically, 

I cos 
2 



Proof: 

Let us consider a beam of plane polarised light coming from the plane 

of the polariser is incident at an angle „ ‟on the plane of the analyser. 

The amplitude of the light vector „E‟ is now resolved into two mutual 

perpendicular component i.e. E1  E0 cos which is parallel to the plane 

of transmission and E2    E0 sin which is perpendicular to the plane of 

transmission. As we are able to see only the parallel component so the 

intensity of the transmitted light coming from the plane of the 

analyser is proportional to the parallel component only. 

Thus, 
 

IE 
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 I  kE

2 
cos 

2   I  cos 
2   , where I    kE2 

1 0 0 0 0 

 

I cos
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Which is Mauls law 

 
Double refraction: 

The phenomenon of splitting of ordinary light into two 

refracted ray namely ordinary and extra ordinary ray on passing 

through a double refracting crystal is known as double refraction 

Explanation: 

 
To explain the double refraction, let us consider an ordinary 

light incident upon section of a doubly refracting crystal 

 

 
When the light passing through the crystal along the optic axis 

then at the optic axis the ray splits up into two rays called as 

ordinary and extraordinary ray which get emerge parallel from 

the opposite face of the crystal through which are relatively 

displaced by a distance proportional to the thickness of the 

crystal. This phenomenon is called as double refraction. 

Difference between the Ordinary (O-ray)and Extra ordinary 

ray(E-ray) 
 
 

Ordinary ray Extraordinary ray 



 

 

1.These ray obeys the law of 

refraction 2.For ordinary ray 

plane of vibration lies 

perpendicular to the 

direction of 

propagation 

3. The vibration of particles are 

perpendicular to the 

direction of ray. 

4. Plane of polarisation lies in 

the 

principal plane. 

5. Refractive index is constant 

along 

optics axis. 

6. It travels with the constant 

speed in all direction. 

1. These ray do not obey law of 

refraction 

2. For extraordinary ray the 

plane of vibration parallel to 

the direction of propagation 

3. The vibration of particle is 

parallel to 

the direction of ray. 

4. Plane of polarisation is 

perpendicular to 

its principal axis. 

5. Refractive index varies along 

optics 

axis. 

6. It travels with different speed 

in different direction .But it 

travel with equal speed along 

optics axis 
 

 

Double refracting crystal: 

The crystal which splits a ray of light incident on it into two 

refracted rays such crystal are called double refracting crystal.It 

is of two types 

1. Uniaxial 

2. Biaxial. 

Uniaxial: The double refracting crystal which have one optic 

axis along which the two refracted rays travel with same 

velocity are known as uniaxial crystal 

Ex: Calcite crystal, tourmaline crystal, quartz 

Biaxial: The double refracting crystal which have two optic axis 

are called as biaxial crystal 

Ex: Topaz, Agromite 



 

 

 

Optic axis: It is a direction inside a double refracting crystal 

along which both the refracted behave like in all respect. 

 
Principal section: A plane passing through the optic axis and 

normal to a crystal surface is called a principal section 

Principal plane: 

The plane in the crystal drawn through the optic axis and 

ordinary ray or drawn through the optic axis and the 

extraordinary ray is called as principal plane these are two 

principal plane corresponding to refracted ray 

Polarisation by double refraction: 

To explain polarisation by double refraction let us consider a 

beam of light incident normally through a pair of calcite crystal 

and rotating the second crystal about the incident ray as axis we 

have the following situations as: 

Case 1 

When principal sections of two crystals are parallel then two 

images O1 and E1 are seen. 

 The ordinary ray from the first crystal passes undeviated  

through the 2nd crystal and emerges as O1 ray.  The 

extraordinary ray (E-ray) from the 1st crystal passes through the 

2nd crystal along a path parallel to that inside the 1st and  

emerges as E1 -ray. Hence the image O1 and E1 are seen 

separately. 

 When the 2nd crystal is rotated through an angle 45˚ with respect 

to 1st , then the two new images O2 and E2 appear .As the 

rotation is continued , O1 and O2 remained fixed while E1 and  

E2 rotate around O1 and O2 respectively  and  images are found 

to be equal intensities. 

 When the 2nd crystal is rotated at an angle 90˚ w.r.t 1st the 

original images O1 and E 1 have to vanish and all the new 

images O2 and E2 have acquired the maximum intensity. 



 

 

 

 When the 2nd crystal is rotated at an angle 135˚ w.r.t the 1st , four 

images once again appear with equally intense. 

 
 When the 2nd crystal is rotated at an angle 180˚ w.r.t 1st, the O2 

and E2 vanishes and O1 and E1have come together in the centre. 
 

 
 

This is how we are able to produce the plane polarised light by 

the method of double refraction. 

Nicol Prism: 



 

 

It is an optical device made from a calcite crystal for producing and 

analysing plane polarised light. 

Principle: 

It is based on the principle that it eliminates the ordinary ray by total 

internal so that the extraordinary ray became plane polarised emerges 

out from it. It is based on double refraction. 

Construction: 

A calcite crystal about the three times as long as the wide is taken .Its 

end faces are ground such that the angles in the principal section 

become 68˚ and 1120 instead of 71˚ and 109˚.The crystal is cut apart 

along a plane which is perpendicular to both the principal section .The 

two cut surfaces are ground of polished optically flat. They are then 

cemented together by Canada balsam whose refractive index is 1.55 

for sodium light and the crystal is then enclosed in a tube blackened 

inside. 
 
 

 

Action: 



 

 

When a ray of unpolarised light is incident on the nicol prism it 

splits up into two refracted ray as O & E ray. Since the refractive 

index of the canabalsum 1.55 is less than the refractive index of 

calcite for the ordinary ray (O- ray), so the O- ray on reaching the 

Canada balsam get totally reflected and is absorbed by the tube 

containing the crystal while E-ray on reaching the Canada balsam is 

get transmitted. Since E- ray is plane polarised then the light  

emerging from the nicol is plane polarised in which vibration are 

parallel to the principal section. 

Uses: 

The nicol prism can be used both as apolariser and also an analyser. 

When a ray of unpolarised light is incident on a nicol prism, then the 

ray emerging from the nicolprism is plane polarised with vibration in 

principal section. As this, ray falls on a second nicol which is parallel 

to that of 1st, its vibration will be in the principal section of 2nd and 

will be completely transmitted and the intensity of emergent light is 

maximum, thus the nicol prism behaves as a polariser. 
 

 
 

If the second nicol is rotated such that its principal section is 

perpendicular to that of 1st then the vibration in the plane polarisation 

may incident on 2nd will be perpendicular to the principal section of 

2nd. 



 

 

Hence the ray will behave as a ray inside the 2nd and will lost by total 

reflection at the balsam surface. 

If the second nicol is further rotated to hold its principal section again 

parallel to that of 1st the intensity will be again maximum then the 1st 

prism acts as apolariser and the 2nd prism acts as an analyser. 

Limitations: 

1. The nicol prism works only when the incident beam is 

slightly convergent or slightly divergent. 

2. The angle of incidence must be confined with 14⁰. 

Quarter wave plate: A double refracting crystal plate having a 

thickness such as to produce a path difference of 
 

or a phase 
4 

difference of 
 

between the ordinary and extra ordinary wave is called 
2 

as quarter wave plate or 
 

plate . 
4 

 

 

 
 

Construction: It can be constructed by cutting a plane from double 

refracting crystal such that its face parallel to the optic axis. 
 

Working: 



 

 

When a beam of monochromatic light incident on the plate it 

will be broken up into O-ray and E-ray which will perpendicular to 

the direction of wave propagation and vibrating in the direction of 

incidence respectively. 
 

Let us consider a doubly refracting crystal 

Let t= thickness of crystal plate 

O   be the refractive index of the crystal for O-ray 

E   be the refractive index of the crystal for O-ray 
 

Ot 

Et 

= optical path for O ray 

= optical path for E ray 

then the path difference between the waves is ( O  E )t 

if the plate acts as quarter wave plate , 

then ( O  E )t = λ/4 

 t 
 

 

4(O   E ) 

This is for positive crystal. The crystal in which the O-ray 

travels with a less velocity than E-ray called positive crystal. 
 

 

For positive crystal VO VE and E  O 

Ex: calcite, tormulaline etc. 



 

 

The crystal in which the O-ray travels with a greater velocity 

than E-ray called positive crystal. 

For a-ve crystal and VO VE 

Ex: quartz, ice 

and E  O 

 

 

 

 

 

 

 

 

 

 

 
Uses: 

t 
  

4(E   O ) 

 

1. It is used for producing circularly and elliptically polarised 

light. 
 

 

 

 

2. In addition with nicol prism it is used for analysing all kind of 

polarised light. 

 

Half wave plate 

 

A double refracting crystal plate having a thickness such as its 

produces a path difference of λ/2 between the ordinary and 

extraordinary wave is called half wave plate. 



 

 

 
 

Construction: It can be constructed by cutting a plane from double 

refracting crystal such that its face parallel to the optic axis. 
 

Working: 

When a beam of monochromatic light incident on the plate it 

will be broken up into O-ray and E-ray which will perpendicular to 

the direction of wave propagation and vibrating in the direction of 

incidence respectively. 
 

Let us consider a doubly refracting crystal 

Let t= thickness of crystal plate 

O 

E 

Ot 

Et 

be the refractive index of the crystal for O-ray 

be the refractive index of the crystal for O-ray 

= optical path for O ray 

= optical path for E ray 

then the path difference between the waves is ( O  E ) t 

If the plate acts as quarter plate, then ( O  E ) t = λ/2 



 

 

 t 
 

 

2(O   E ) 

This is for positive crystal. The crystal in which the O-ray 

travels with a less velocity than E-ray called positive crystal. 
 

 

For positive crystal VO VE and E  O 

Ex: calcite, tormulaline etc. 

The crystal in which the O-ray travels with a greater velocity 

than E-ray called positive crystal. 

For a-ve crystal and VO VE 

Ex: quartz, ice 

and E  O 

 

 

 

 

 

 

 

 

 

t 
  

2(E   O ) 

Uses: 1.It is used in polarimeter as half shade devices to divide 

the field of view into two halves presented side by side 

2.It is used to produce the plane polarised light. 

 
 
 

λ/4 plate λ/2 plate 



 

 

1. It produces a path difference 

of λ /4 between O and E wave 

2. The light emerging from a λ 

/4 plate maybe circularly 

elliptically or plane polarised. 

3. In this case nicol may give a 

non zero minimum. 

4. It is used for production of all 

type polarised light. 

1. It produces a path difference 

of λ /2 between O and E ray. 

2. The light emerging from a λ 

/2 plates is plane polarised for 

all orientation of the plate. 

3. In this case nicol may give a 

zero minimum always. 

4. It is used in polarism for 

half shade device. 
 

Production and Analysis Polarised Light 

1. Production of plane polarised light: 

 
To produce plane polarised light a beam of ordinary light is sent 

through a Nicol prism in a direction almost parallel to the long 

edge of the prism. Inside the prism the beam is broken upto two 

components „O‟ and „E‟ ray. The „O‟ component is totally 

reflected at the Canada balsam and is absorbed. 
 

 

 
 

The „E‟ component emerges out which is plane polarised with 

vibration parallel to the end faces of the Nicol. 

 
2. Production of circularly polarised light: 

The circularly polarised light can be produced by allowing 

plane-polarised light 

obtained from the Nicol to fall normally on a quarter wave plate 

such that the 



 

 

direction of vibration in the incident plane polarised light makes 

an angle of 45⁰ with 

the optic axis of the crystal. 
 

 

 
 

Inside the plate the incident waves of amplitude A is divided 

into 

O  Asin 45
0

 

E  Acos 45
0

 

with a phase difference 

 
 

between them. 
2 

Let Acos 45
0 = Asin 45

0 Asin 45⁰= a of the axis of x 

Let x  a sin(wt 
  

)  a cos wt 
2 

and y  a sin wt 

Eliminating t from both the equation, we have 

x
2 
 y 

2 
 a

2
 which represents a circle. 

Hence the light emerging from plate is circularly polarised. 

3. Production of elliptically polarised light: 

The elliptically polarised light can be produced by allowing plane 

polarised light normally in a quarter wave plate such that the direction 

of vibration in the incident plane polarised light makes an angle other 

than 0⁰,45⁰ and 90⁰ with the optical axis which is 30⁰. 

In this case the incident wave is divided inside the plate into E and O 

components of unequal amplitude Acos 30
0

 and Asin 30
0

 respectively 

which emerge from the plate with a phase difference of 
 

. 
2 



 

 

 
 

 
 

If we take Acos 30
0 = a and Asin 30

0 = b,then the emerging component 

can be written as, 

x  a sin(wt 
  

)  a cos wt 
2 

 
 

and 

 

 

y  bsin wt 

Now eliminating „t‟ from both the equation we have 

x 2 

 
y 2 





 

which the equation of an ellipse. Hence the emerging 
1 

a 2 b2 

light coming from 

    plate is elliptically polarised 

Analysis of different polarised light: 

The whole analysis of different type of polarised light can be 

represented in algorithm form with figure as follows: 



 

 

 
 

Case: 1 
 

Case: 2 
 
 

Case: 3 
 



 

 

 

 

 

 

POLARISATION IN SUMMARY 
 

 

 
 



 

 



 

VECTOR CALCULUS 

The electric field (E) , magnetic induction(B) , magnetic intensity(H ) , 

electric displacement(D) , electrical current density(J ) , magnetic 

vector potential ( A) etc. are, in general, functions of position and time. 

These are vector fields. 

Scalar quantities such as electric potential, electric charge density, 

electromagnetic energy density etc. are also function of position and 

time. They are known of as fields. 

Time Derivative of a Vector Field 
 

If A(t) time dependent vector field, then the Cartesian coordinates 

A(t)  îAx (t)  ĵAy (t)  k̂Az (t) 

 

dA 
 î   Ax (t)  ĵ   

Ay (t) 
k̂  Az (t)  

    

dt t t t 
 

Notes: 
d 

( A B)  A 
dB 

 ( 
dA

)  B 
dt dt dt 

 

Gradient of a Scalar Field 

The change of a scalar field with position is described in terms 

of gradient operator. 

grad (V )  V  iˆ 
V 

 ˆj 
V 

 kˆ V
 

   

x y z 
 

Where   iˆ 



x 
 ˆj 




y 
 kˆ 

z 
is del operator or nabla 

 

V is a vector. The gradient of a scalar is a vector. 

Divergence of a Vector Field 



 

 

 
i 

Ax 



x 





The divergence of a vector field A is given by 
 

  

 (iˆ 

  ˆj 


  k̂  

).(î A  ĵA  k̂A ) = (
Ax   

Ay   
 k̂ Az ) 

 . A 
x y z 

x y z 
x y z 

 

Divergence of a vector field is a scalar. 

 

 
Notes: 

 

                  

.( A B) . A . B 

        

.(V A)  (V ). AV (. A) 

 

where V is a scalar field 

 If the divergence of a vector field vanishes everywhere, it is 

called a solenoidal field. 

 Divergence of a vector field is defined as the net outward flux of 

that field per unit volume at that point. 

Curl of a Vector Field 

The curl of a vector field is given by 
 

 

j k 
      

ˆ Az
 Ay ˆ Ax Az ˆ Ay Ax 

 Curl A=  A  Ay Az  i ( 
y 


z 

)  j( 
z

  
x 

)  k ( 
x

  
y 

) 
 

x x 
 

 Curl of a vector field is a vector 
 

 If V is a scalar field, A and B are two vector fields, then 
                  

( A B)  A  B 

     

(V A)  (V )  AV ( A) 

 If curl of a vector field vanishes, then it is called an irrotational 

field. 

Successive Operation of the  operator 







 

 

 

 A 


(i) Laplacian 
      

ˆ  ˆ 





ˆ  ˆ  ˆ 


 

ˆ  
2
 

 
 

2 2 
 

  (i 
x 

 j 
y 

 k 
z 

).(i 
x 

 j 
y 

 k 
z 

)  
x

2 
 
y

2 
 
z

2
 

    2 
2 2 2 

     
x

2   
 
y

2  
 
z

2
 

This is called Laplacian Operator 

(ii) Curl of gradient of ascalar 

V  iˆ 
V 

 ˆj 
V 

 kˆ V
 

   

x y z 

Where V is a scalar field 
(V )  î [( 

 
)(
V 

) 


 

 V 
)]  

 ̂
 

  

 V 
)  ( 

 
)(
V 

)]  k̂ [( 
 

)(
V 

)  ( 
 

)(
V 

)] 
 

y z (
z 

)( 
y 

j[(
z 

)( 
x

 x z x y y x 

 
 

 
 

(V ) 

î  ĵ k 

  


 





  

x x 

V V 

x x 

ˆ 
2
V 

 
 

x 

V 

x 


2
V 

 
 

 

 
ˆ 

2
V 

 

 

 


2
V 

 

 
ˆ 

2
V 

 

 

 


2
V 

 

(V )  i (
yz 

 
zy 

)  j(
zx 

 
xz 

)  k(
xy 

 
yx 

)  0
 

Thus Curl of gradient of a scalar field is zero. 

Note: 

 If 
  

 0 , then 

field i.e. A  V 

A can be expressed as gradient of a scalar 

 Conversely if a vector field is gradient of a scalar then 

its curl vanishes. 

(iii) Divergence of Curl of a Vector Field 
      

ˆ Az
 Ay ˆ Ax Az ˆ Ay Ax 

 

 A  i ( 
y 


z 

)  j( 
z

  
x 

)  k( 
x

  
y 

) 
 

   ˆ  ˆ  ˆ 


 

ˆ Az Ay ˆ Ax Az ˆ Ay Ax 
 

. A  (i 
x 

 j 
y 

 k 
z 

).[(i ( 
y 


z 

)  j( 
z

  
x 

)  k( 
x

  
y 

)] 
 

    Az 
 

 

Ay  Ax 
 

 

Az  Ay 
 

 

Ax 
 

 . A  
x 

( 
y 


z 

)  
y 

( 
z 

 
x 

)  
z 

( 
x 

 
y 

) 

       2 A 
2 
A 

2 
A 

2 
A 

2 
A 

2 
A 

 . A z 
xy 

y 



xz 
x 

yz 
z 

yx 

y 



zx 
x 

 

zy 



 

 






 

 

 

 

 

 

 
(iv) (iv) 

 
(v)(v) 

  

 . A  0 

i.e. divergence of curl of a vector is zero. 

Conversely, if the divergence of a vector field is zero, then 

the vector field can be expressed as the curl of a vector. 
           

 A  (. A) 
2 
A 

                   

.( A B)  B.(  A)  A.( B) 
 

 

 

 

 

 

 

 

 

Line Integral of a Vector 

The line integral of a vector field between two points a and b, 

along a given path is 
b  
   

IL    A.dl 
a 

dl  elemental length along the given path between a and b. 
The line integral of a vector field is a scalar quantity. 

b b 

IL    (îAx   ĵAy   k̂Az ).(îdx  ĵdy  k̂dz)   ( Axdx  Aydy  Azdz) 
a a 

Notes: 
 If the integral is independent of path of integration between a 

and b, then the vector field is conservative field. 


 The line integral of a conservative field A 

vanishes 
 

along a closed path 

i.e. 

 In general, the line integral depends upon the path between a 

and b. 
 

Surface integral of a Vector 
 

The surface integral of a vector field A , over a given surface S is 
   

Is  A.ds 
S 

Where ds  elemental area of surface S 

 A.dl  0 



 

 

 A.ds 

 A.dl 



The direction of ds is along the outward normal to the surface. 


Writting ds  nˆds , where nˆ is unit vector normal to the surface at a 

given point. 
    

So Is   A.ds   A.nˆds   Ands 
S S n 



where  An   A.n̂ , normal to the component of the vector at the area 

element. 

So, surface integral of a vector field over a given area is equal to 

the integral of its normal component over the area. 

Surface area of a vector field is a scalar. 
 

Example: E   E.ds 
S 

Volume integral of a Vector 


The volume integral of a vector field A over a given volume V is 


IV     AdV 
V 

Where dV is the elemental volume (a scalar) 

Volume integral of a vector field is a vector. 

Gradient, Divergence and Curl in terms of Integrals 

The gradient of a scalar field φ is the limiting value of its surface 

integral per unit volume, as volume tends to zero 

i.e.   lim 
V 0 V 

 

The divergence of a vector field A is the limiting value of its 

surface integral per unit volume, over an area enclosing the 

volume, as volume tends to zero. 
 


 

. A  lim S 
 

V 0 V 

The curl of a vector field is the limiting value of its line integral 

along a closed path per unit area bounded by the path, as the area 

tends to zero, 
 

 

 A  lim 
S 0 S 

where nˆ is the unit vector normal to the area enclosed. 

 ds 



 

 





Gauss Divergence Theorem 


The  volume  integral  of  divergence  of a vector A over a given 
volume V is equal to the surface integral of the vector over a closed 

area enclosing the volume. 
 

V S 

This theorem relates volume integral to surface integral. 

Stokes Theorem 

The surface integral of the curl of a vector field A over a given 

surface area S is equal to the line integral of the vector along the 

boundary C of the area 
 

 

 

S C 

For a closed surface C=0. Hence surface integral of the curl of a 

vector over a closed surface vanishes. 

Green’s Theorem 

If there are two scalar functions of space f and g, then Green‟s 

theorem is used to change the volume integral into surface integral. 

This theorem is expressed as 

( f 
2 
g  g

2 
f )dV  ( f g  gf )dS 

V S 

V- volume enclosed by surface S. 
 

 

 

 

 

 

 

 

Electric Polarization ( P ) 
 

 

Electric polarization  P  is defined as the net dipole moment ( p ) 

induced in a specimen per unit volume. 
 




P 
V 

Unit is 1 coul/m2 

The dipole moment is proportional to the applied electric field. 
 

So p   E ,   proportionalitycons tan t, knownas polarizability 

.AdV   A.dS 

( A).dS   A.dl 

p 



 

 

  



  





If N is the number of molecules per unit volume then polarization 

is given by 
 

P  N E 


Electric Displacement Vector D 


The electric displacement vector D is given by 

D  P 0 E ---------------------------- (1) 

where is the P  polarizationvector 

Unit of 


D 1 
ampere sec 
 

 

m2 

In linear and isotropic dielectric, 
 

D   E  0r E -------------------- (2) 

Comparing equations (1) and (2), we get 
  

0r  E  P 0 E 
 

 P  0 (r  1) E 

Electric Flux (φE) 

 

The number of lines of force passing through a given area is known as 

electric flux. 

It is given by 

 

 
Unit of flux-1 

 

 
N  m

2 

Coul 

 

E   E.dS 
S 

 

 

 

 

 

 

 

Gauss’ Law in Electrostatic: 

Statement: The total electric flux (φE) over a closed surface is equal to 
1 

times the net charge enclosed by the surface. 
 0 

    

E   E.dS 
S 

 
qnet 

0 

Here S is known as Gaussian surface. 



 

 

 E.dS  . E dV 







In a dielectric medium Gauss‟ law is given by 
    

E   E.dS 
S 

 
qnet 



 - Permittivity of the medium. 

In terms of displacement vector Gauss‟ law is given by 
 

 
 

Notes: 

    

E   D.dS  qnet 

S 

 The charges enclosed by the surface may be point charges or 

continuous charge distribution. 

 The net electric flux may be outward or inward depending upon 

the sign of charges. 

 Electric  flux  is  independent  of   shape  & size of Gaussian 

surface. 

 The Gaussian surface can be chosen to have a suitable 

geometrical shape for evaluation of flux. 

 Limitation of Gauss‟ Law 

(a) Since flux is a scalar quantity Gauss‟ law enables us to find 

the magnitude of electric field only. 

(b) The applicability of the law is limited to situations with 

simple geometrical symmetry. 

 

Gauss’ Law in Differential form 
 

Gauss‟ law is given by 
 
 

 

E.dS 
S 

 
qnet 

 



For a charge distribution 

qnet      dV where   volumech arg edensity 
V 

Using Gauss divergence theorem 
       



S V 

 

 
So 

 1  
  dV 

     

 

   . E dV 
0 V V 





 

 

 B.dS  0 

 B.dS  . B 







 

     

Or (. E 
V 

) dV  0 
0 

 

 
    
. E  0 

0 

 

 
    
. E 

0 

This is the differential form of Gauss‟ law. 


Magnetic Intensity (H) and Magnetic Induction (B) 

The magnetic intensity (H ) is related to the magnetic field induction 

(B) by 
 



(H ) 



(B) 
 

 


0 

 

Unit: in SI system (H ) is in amp/m and (B) in tesla. 

Magnetic Flux (m ) 

 

The magnetic flux over a given surface area S is given by 

(m )   B.dS   BdS cos
S S 



where   angle between magnetic field B and normal to the surface 

Unit of flux: 1 weber in SI 

1 maxwell in cgs(emu) 

So 1T= 1 weber/m2 

1 gauss= 1maxwell/cm2 

Gauss’ Law in magnetism 

Since isolated magnetic pole does not exist, by analogy with Gauss‟ 

law of electrostatics, Gauss‟ law of magnetism is given by 
    



S 

Using Gauss divergence theorem 
      



S V 

 

 . B  0 

 

 
dV  0 

This is the differential form of Gauss‟ law of magnetism. 

Ampere’s Circuital law 







 

 

 B.dl  0 I 

 H.dl  I 

  

      

Statement:-The line integral of magnetic field along a closed loop is 

equal to                                             
 

 



C 

 

Where I  net current enclosed bythe loop 

C closed path enclosing the current (called ampere loop). 

In terms of magnetic intensity 
 

 



C 

 

Ampere’s Law in Differential form 

Ampere‟s law is 
 

----------------------------------(i) 
C 

 

Using Stoke‟s theorem, we have 
 

 B.dl  ( B).ds ---------------------------------- (ii) 
C S 

 

In terms of current density J 

0 I  0  J.ds --------------------------------------------------- (iii) 
S 

 

Using (ii) and (iii) in equation (i) we have 
 

       

( B).ds  o     J.ds    (o  J ).ds 
S S S 

 

     

 B  o J 
 

This is Ampere‟s circuital law in differential form. 

Faraday’s Law of electromagnetic induction 

 B.dl  0 I 

 





 

 

 E .dl 

  



 



 

S 

Statement :-The emf induced in a conducting loop is equal to the 

negative of rate of change of magnetic flux through the surface 

enclosed by the loop. 

       


m -------------------------------------- (i) 
t 

The induced emf is the line integral of electric field along the loop. 
 

 

 
C 

 

The magnetic flux is 
 

    

m   B.ds 
S 

 

So from the above 
 

     E .dl   
    
B.ds 

C t S 

 

This is Faraday‟s law of electromagnetic induction in terms of E and 


B 
 

Differential form of Faraday’s Law 

Now using Stokes‟ theorem 
 

       

E .dl    ( E).ds 
C S 

 

  

But   
t  

B.ds 

 

From above two equations 
 

 
  (  

 
 



 
 B 

 E).ds   
t 

B.ds  
t 

.ds 
S S S 


C 

E .dl   
t

 
  m 





 

 

 J.ds 

 J.ds  . J 

  t 

Or  (
  

 
 B  

 0 
 E 

S 
t 

).ds 

 


       B 

  E 
t 
 0 

 

This is differential form of Faraday‟s law electromagnetic 

induction. 

Equation of Continuity 

The electric current through a closed surface S is 
 

 

I 
S 

 

Using Gauss divergence theorem 
 

     

I 
S V 

dV ----------------------- (i) 

 

Where S is boundary of volume V. 
 

Now I   
q

 
t 

 rate of decrease of ch arg e fromthevolumethroughsurface S 

 

 I   
 
  dV   

 
dV ----------------------(ii) 

t V V t 

From (i) and (ii) 

   
. J  dV   dV 

V V 

 

  (
     

)dV  0 
. J  

t
 

 

    
 . J  

t 
 0 

 

This is equation of continuity. 

Displacement Current 

V 



 

 



  t 

Maxwell associated a current (known as displacement current) with 

the time varying electric field. 

A parallel plate capacitor connected to a cell is considered. 

During charging field E between varies. 

Let q  instantaneous charge on capacitor plates. 

A  area of each plate 

We know that the electric field between the capacitor plates is 
 

E  
q
 

0 A 
 

 
dE  

   
1  dq 

  

dt 0 A dt 
 

 0 A 
dE 

 
dq 

dt dt 
 

 Id  0 A 
dE 

dt 
where Id  displacement current between the plates 

 

Id exists till  ⃗                   

In general, whenever there is a time-varying electric field, a 

displacement current exists, 

 
Id  0 

S 

 
E.ds  0 

E 
 

t 
 

Where E is electric flux. 
 

Modification of Ampere’s circuital law 

Taking displacement current into account Ampere‟s Circuital law is 

modified as 
 

 

C 
 B.dl  o I  Id 





 

 

This law is sometimes referred as Ampere- Maxwell law. 

The corresponding differential form is given as, 

 B  


o J  o 

E 
t 




 



Or 
 

 H  

J  

D 
 

t 


 



By using 
 

 E  D , 
B 
 H 

0 


0 

 

 

Here  
E 

 J 
 

 

 
 displacement current density 

0   
t 

d 

 

Distinction between displacement current and conduction current 
 

Conduction current Displacement current 

(i) Due to actual flow of 

charge in conducting 

medium. 

(ii) It obeys ohm‟s law. 

(iii) Depends upon V and R 

(i) Exists in vacuum or any 

medium even in absence of 

free charge carriers. 

(ii) Does not obey ohm‟s law. 

(iii) Depend upon and    
   

Relative magnitudes of displacement current and conduction current 
 

Let E  E0Sint alternating field 
 

Then current density 

J   E   E0Sint          (i)  

Displacement current density 
 

J   E 
 




 
E Sint  


E Cost          (ii) 
d 0 

t
 0 

t 
0 0 0 



 

 

2 
Thus there is a phase difference of 

 
between current density and 

displacement current density. 

The ratio of their peak values 

 J   E 
  max    0 
 Jd max 0 E0 0 

 

It means this ratio depends upon frequency of alternating field. 

Notes: 

 For copper conductor the ratio is  
1019 

 
 



 For f>1020 Hz, displacement current is dominant. So normal 

conductors behave as dielectric at extremely high frequencies. 

Maxwell’s Equations 

The Maxwell‟s electromagnetic equations are 
 

 

. D   --------------(1) 
 

 

. B  0 -----------------(2) 
 



       B 
 E   

t
 

 

------------------(3) 

 

 

 
 

Notes: 



   D 

 H   
t   

 J 

 

-------------------(4) 

 

 Equation (1) is the differential form of Gauss‟ law of 

electrostatics. 

 Equation (2) is the differential form of Gauss‟ law of 

magnetism. 

 Equation (3) is the differential form of Faraday‟s law of 

electromagnetic induction. 



 

 

 E 

 Equation (4) is the generalized form of Ampere‟s circuital law. 

 Equations (2) and (3) have the same form in vacuum and 

medium. They are also unaffected by the presence of free 

charges or currents. They are usually called the constraint 

equation for electric and magnetic fields. 

 Equations (1) and (4) depend upon the presence of free charges 

and currents and also the medium. 

 Equations (1) and (2) are called steady state equations as they do 

not involve time dependent fields. 

Maxwell’s Equations in terms of E and B 
 

    
. E  


 --------------(1) 
0 

 

 

. B  0 -----------------(2) 
 



       B 
 E   

t
 

 

------------------(3) 

 


 

 B  
t

 

 


  J 

 

-------------------(4) 
 

In absence of charges 
 

 

. E  0 --------------(1) 
 

 

. B  0 -----------------(2) 
 


       B 

 E 
t 
 0 ------------------(3) 

 


       E 

 B 00 
t 
 0 -------------------(4) 

 

Maxwell’s Equations in Integral Form 
 

     1 

 E .dS 
S 

  dV 
0 V 

--------------(1) 




 

 

 

 

--------------(2) 
S 

 

 

 

 
 

E .dl   
C 

--------------(3) 

 

 

 
 

 
    


 E 



 B.dl  0 (J  0 

C S 
t 

).dS --------------(4) 

 

Physical Significance of Maxwell’s Equation 

(i) Maxwell equations incorporate all the laws of 

electromagnetism. 

(ii) Maxwell equations lead to the existence of electromagnetic 

waves. 

(iii) Maxwell equations are consistent with the special theory of 

relativity. 

(iv) Maxwell equations are used to describe the classical 

electromagnetic field as well as the quantum theory of 

interaction of charged particles electromagnetic field. 

(v) Maxwell equations provided a unified description of the 

electric and magnetic phenomena which were treated 

independently. 

Electromagnetic Waves 

Wave Equation of electromagnetic wave in free space 

In vacuum, in absence of charges, Maxwell‟s equations are 
 

 

. E  0 --------------(1) 
 

 

. B  0 -----------------(2) 

 B.dS  0 



t 

S 

 

B.dS 

 



 

 



  

  
 B 

 
 

------------------(3) 
 E 

t
 

 


  

   
 E

 
 

 

 -------------------(4) 
 B 0 0 

t
 

 

Taking curl of equation (3) 
 


             B   

 E   
t

 

Using equation (4) 

  
t 

( B) 

 

 
             E 

2 
E 

 E   
t 

(0 0 
t 

)  0 0 
 

 

t
2
 

 

 
  


2 
 

2 
E 

 (. E)  E  0 0 
 

 

t
2
 

 

 
  



2 
 

2 
E 

 Since(. E)  0, E  0 0 

t
2

 

 

Taking 0 0 
1 

, where c  velocity of light c2 

 


2 
 1 

2 
E 

We have E  
c

2 
t

2
 

 

This is the wave equation for E . 

Now taking curl of equation (4) 

     

 B  0 0 
t 

( E) 

Using equation (3) 
 

 
             B 

2 
B 

 B  0 0 
t 

( 
t 

)  0 0 
 

 

t
2
 

 

 
  


2 
 

2 
B 

 (. B)  B  0 0 
 

 

t
2
 



 

 



A 

Since 
 

 
2 

  



2 

B 
 (. B) 0, B 0 0 t

2
 

 

Taking 0 0 
1 

, where c  velocity of light c2 

 

 We have 
 


2 




1  
2 

B 
 

B 
c

2
 t

2
 

 

This is the wave equation for B . 

The general wave equation in vacuum can be written as 
 

2  
 1 




2 


  
c2 

t 
2
 

 

Where 
  

  E or B 
 

For charge free non-conducting medium, the general equation will be 
 

2  
 1 




2 


  
v2 

t 
2
 

 

 
1 

, where v  velocity of light in medium s 
v2 

 

Magnetic Vector Potential 

The vector potential in a vector field is defined as when the 

divergence of a vector field is zero the vector can be expressed as the 

curl of a potential called vector potential ( 
 
). 

 

We know that 
 

. B  0 (Maxwell equation) 
 

Then 
  

B    A 

 

(asdiv.ofcurl of avector is zero) 
 

 

The vector A is called magnetic vector potential. The vector A can be 

chosen arbitrarily as addition of a constant vector or gradient of a 

scalar do not change the result. 

Scalar Potential 

  



 

 

  

The scalar potential in a scalar field is defined as when the curl of a 

field is zero the vector can be expressed as the negative gradient of a 

potential called scalar potential ( ). 
 

 

 

 We have        

  
 B 

 
 

 (Maxwell‟s equation 3) 
 E 

t
 

 

Putting B    A in above we get 
 

        

 E   
t 

( A) 

  

E  

 A  
 0  

t 


 



We know that curl of grad of a scalar is zero. So we can write 
 

E  
 A 

  where isascalar functioncalled thescalar potential . 
t 

 

So E   
 A 

 
t 

 

 

For atimeindependent field 

 

 
 A 

 0; so 
t 

 

E   here electrostatic potential 
 

Wave equation in terms of scalar & vector potential 

Let us consider the Maxwell‟s equations, 
 

.E  0              (1) 
 

 B    
E

 
 

             (2) 
0 0 
t

 

 

Writing E    
 A

 
t 

; A  vector potential 

In free space and absence of 

charge 



 

 

 

.A    0 



We have 

.E  .
 
  

A  
 0  

t 


 

or 
2  

   
.A   0 

t 

Using Lorentz gauge condition 
 

 
1 

2


c
2 


2
t 

 
2 

 
1 

2
Wehave     0 

 

c
2 


2
t 

 

This is the wave equation in terms of scalar potential. 

Putting E    
A

 
t 

B   A in equation (2) we get 

 A    
 

  
 A 


0 0 
t 
 t 






  

 


2  

2 
A 

 
 .A  A  0 0 

t 
   0 0 t

2
 

 

   2 

2 
A 

 
 .A  0 0 

t 
   A  0 0 

t
2
 

 

The LHS vanishes by Lorentz gauge condition. 
 

So 
2
 A  0 0 


2 
A 

t2 
0 

 

This is the wave equation in terms of vector potential. 

Lorentz gauge potential 


2 
.A 

 1   
 0 (Lorentz gauge condition) 

c
2 
t 

.A  0 (Coulomb gauge condition) 

 

Transverse nature of elecromagnetic wave 



 

 

e.  E e 


i (k .r t ) 

0 



0 

0 

ˆ 

 

The plane wave solutionof waveequation for E and B are 

E r, t   eE ei (k .r t )        (1) 

       (2) 
 

where  e, b  unit vector along E and B respectively. 

E0 , B0  amplitudes of E and B respectively. 

k  wave propagationvector 

  angular frequency 
 

Using .E  0 in equation (1) we have 
 

. eE ei(k .r t )   0 

 0 

 e. E ei(k .r t )   .e E ei (k .r t )   0 

  0    0 

as .V A  V .A V .A


Since ê  constant, 
 

 0 



.ê  0 

or e.ikE e
i (k .r t ) 

 0 

Since E0   0, 

e.k  0 

ei (k .r t )  0, 

         (3) 
 

This shows the transverse nature of electric field. 

Similarly, from Maxwell‟s equation 

.B  0 

 

We have 
 

. bB ei (k .r t )   0 

 0 

 b. B ei (k .r t )   .b B ei (k .r t )   0 

  0    0 


Since b̂  constant, 


.b  0 

B r, t  bB e   i (k .r t ) 

0 



 

 

0 

        



we get(E e )  E ike 

0 0 0 

b. B ei (k .r t )   0 

  0 

or b.ikB e
i (k .r t ) 

 0 

Since B0  0, ei (k .r t )  0, 

b.k  0          (4) 
 

This shows the transverse nature of magnetic field. 

Mutual orthogonality of E, B and k 

Now from Maxwell‟s 3rd equation we have 
 



[eE0e 

 
i(k.r t ) ]    

 
[bB e 

t 
0

 

 
i(k.r t ) 

 
] 

-----------(5) 
 

Using ( AV )  V ( A)  (V )  A , we have 
 

  

[eE ei(k.r t ) ]  E ei(k.r t ) ( e) [(E ei(k.r t ) )] e 
 

Since e is a constant unit vector, ( e)  0 and 
 


i(k.r t ) i(k.r t ) 

0 0 

 



[eE ei(k.r t ) ]  E ikei(k.r t )  e  E iei(k.r t ) (k  e) 

 

Now  
[bB ei(k.r t ) ]  bB 

 
{ei(k.r t )}  bB ei(k.r t ) (i)  

t 
0 0 

t 
0

 

 

Then from eqn. 5 
 

E iei(k.r t ) (k  e)  bB ei(k.r t ) (i)  bB iei(k.r t ) 

 
 E0 (k  e)  bB0

 (k  e)  
B

0
 

b 

E0 

 

So b is perpendicular to both k and e . 

Thus electric field, magnetic field and propagation vector are 

mutually orthogonal. 

0 0 0 

0 0 0 



 

 

00 

00 

 

 

(k  e)  
B0 

b 

E0 

Relative magnitudes of E and B 

Now taking magnitudes 
 

 

 k  
B0

 

E0 

 
E0  

 
 c, 

 

 
 

wherec  velocity of light 

B0 k 

 

c  
1
 

 

 

Now using B0  0 H0 

 

0  0c  0 
H 

 


0  Z 
 

0 

0 0 

 

 

The quantity Z0 has the dimension of electrical resistance and it is 

called the impedance of vacuum. 
 

Phase relation between E and B 

In an electromagnetic wave electric and magnetic field are in phase. 

Either electric field or magnetic field can be used to describe the 

electromagnetic wave. 

Electromagnetic Energy Density 

The electric energy per unit volume is 
 

u    
1     1 2

 
 E . D   E 

E 
2 2 

       (1) 

The magnetic energy per unit volume is 

u    
1     1 2

 
 B. H  H 

B 
2 2 

       (2) 

E 1 



 

 

0 0 



 
 

The electromagnetic energy densityis givenby 
 

uEM  
1 

( E2 
  H 

2 
) 

2 

Invacuum 

uEM 
 

1 
(

2 
E

2 
  H 

2 
) 

 

Poynting Vector 

The rate of energy transport per unit area in electromagnetic wave is 

described by a vector known as Poynting vector ( S ) which is given as 
 

  

S  E H 

     

E B 
 

 




Poynting vector measures the flow of electromagnetic energy per unit 

time per unit area normal to the direction of wave propagation. 
 

Unit of 
 

1 
watt 

in SI. 
 

S 
m

2
 

 

Poynting Theorem 

We have the Maxwell equations 
 



       B 
 E   

t
 




         (i)  

 

 H 
 D 



t 
 J          (ii) 

 

 

Taking dot product H with (i) and E with (ii) and subtracting 
 

 
                 B     D  

H . E E. H   H . 
t 
 E . 

t 
 E . J        (iii) 

 

      

LHS  .(E H ) 



 

 

 



dV   E . J dV 

 
     B  ( H )   H 

2
 

H .  
t  

 H . 
t

  
t 

( 
2 

) 

Similarly 
 

     D 
E . 

t
 



 E . 
( E) 
 

 

t 
 
 

( 
t 

 E 
2
 

) 
2 

 

Then from (iii) 
 
 

         E2
 H 2  

.(E H )   
t 

( 
2 
 )  E . J 

2 
 
 

   

 . S  
uEM 

t 

 

 E . J 

 
  
E H  S and u  

 E2 

 
H 

2
 

  

EM 
2 2 

This is sometimes called differential form of Poynting theorem. 

Taking the volume integral of above 

. S dV  
uEM 

t 

 

dV  E . J dV 
V V V 

 

Using Gauss divergence theorem to LHS we have 

 



V 

 

This represents Poynting theorem. 

LHS  of  the  equation  rate of flow of electromagnetic energy 

through the closed area enclosing the 

given volume 

1
st  

term of RHS   rate of change of electromagnetic energy in 

volume 

1
st 

term of RHS  work done by the electromagnetic field on the 

source of current. 


A 

 

S.d A   
uEM 

V 
t 

as 



 

 

E sin t 2 2 

0 

2 

rms 

EB 

Thus Poynting theorem is a statement of conservation of energy in 

electromagnetic field. 

 

 

 

 

 
In absence of any source, J=o 

 

 then 
 

 
uEM  0 

 

. S 
t

 
 

 

This is called equation of continuity of electromagnetic wave. 

Poynting Vector & Intensity of electromagnetic wave 
 

 

Since E and H aremutually perpendicular 
 



S  EH  





Here E and H are instantaneous values. 
 

 

Since E and H arein phase 

E 
 

E0  c 

H H0 

E2 

or S  
c

 

If E  E0 sin t, thenaveragevalueof Poynting vector is 

S   
c 





2 

0 

2c 
as sin

2 t  
1

 
2 

  
c E2 

   2 E 
 S 0 c Erms 

2 
as Erms   0

 

 

The average value of Poynting vector is the intensity (I) of the 

electromagnetic wave, 
 

I  S  c E2
 

E 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QUANTUM PHYSICS 

Need for quantum physics: Historical overview 

 About the end of 19th century, classical physics had attained  

near perfection and successfully explains most of the observed 

physical phenomenon like motion of particles, rigid bodies, fluid 

dynamics etc under the influence of appropriate forces and leads 

to conclusion that there is no more development at conceptual 

level. 



 

 

 But some new phenomenon observed during the last decade of 

19th century which is not explained by classical physics. Thus to 

explain their phenomena a new revolutionary concept was born 

which is known as Quantum physics developed by many 

outstanding physicists such as Planck, Einstein, Bohr, De 

Broglie, Heisenberg, Schrodinger, Born, Dirac and others. 

 The quantum idea was 1st introduced by Max Planck in 1900 to 

explain the observed energy distribution in the spectrum of 

black body radiation which is later used successfully by Einstein 

to explain Photoelectric Effect. 

 Neils Bohr used a similar quantum concept to formulate a model 

for H-atom and explain the observed spectra successfully. 

 The concept of dual nature of radiation was extended to Louis 

De Broglie who suggested that particles should have wave 

nature under certain circumstances. Thus the wave particle 

duality is regarded as basic ingredient of nature. 

 The concept of Uncertainty Principle was introduced by 

Heisenberg which explains that all the physical properties of a 

system cannot even in principle, be determined simultaneously 

with unlimited accuracy. 

 In classical physics, any system can be described in any 

deterministic way where as in quantum physics it is described 

by probabilistic description. 

 Every system is characterized by a wave function ψ which 

describes the state of the system completely and developed by 

Max Born. 

 The wave function satisfies a partial differential equation called 

Schrodinger equation formulated by Heisenberg. 

 The relativistic quantum mechanics was formulated by P.A.M. 

Dirac to incorporate the effect of special theory of relativity in 

quantum mechanics. 

In this way, this leads to the development of quantum field 

theory which successfully describes the interaction of radiation 



 

 

with matter and describes most of the phenomena in Atomic 

physics, nuclear physics, Particle physics, Solid state physics 

and Astrophysics. 

The Quantum Physics deals with microscopic phenomena 

where as the classical physics deals with macroscopic bodies. 

All the laws of quantum physics reduces to the laws of classical 

physics under certain circumstances of quantum physics are a 

super set then classical physics is a subset. 

i.e.,                                            
 

 

PARTICLE ASPECTS OF RADIATION 

The particle nature of radiation includes/are exhibited  in 

the phenomena of black body radiation, Photoelectric effect, 

Compton scattering and pair production. 

 
BLACK BODY RADIATION 

 A black body is one which absorbs all them radiations 

incident on it. 

 The radiations emitted by black body is called black body 

radiation. 

 The black body emits radiation when it is heated at a fixed 

temperature and it contains all frequencies ranging from 

zero to infinity. 

 The distribution of radiant energy among the various 

frequencies components of the black body radiation 

depends on its temperature. 

The energy distribution curve for black body radiation 

shows the following characteristics such as 

 At a given temperature the energy density has 

maximum value corresponding to a value of 

frequency or wavelength. 



 

 

 The frequency corresponds to maximum energy 

density increases with increase of temperature. 

 The energy density decreases to zero for both higher 

and lower values of frequency or wavelength. 

 The energy density corresponding to a given 

frequency or wavelength increases with increase of 

temperature. 

Many formulations are formulated to explain the above 

experimental observations like Stefan-Boltzmann law, 

Wein‟s displacement law and Planck‟s radiation formula. 

Out of which Planck‟s radiation formula successfully 

explains the facts of black body radiation. 

PLANCK’S RADIATION FORMULA 

According to Planck the black body was assumed to be cavity 

which consists of a large no. of oscillations with frequency ν and 

the empirical formula for energy distribution in the spectrum of 

black body radiation is given as 
 

  

   ⁄     

(1) 
 

 

 

 

 
In low frequency, 

  
 

 

   ⁄      
   (2) 

Lim(ν      ) [ν ,                   ] 
 

i.e ν     
 

   ⁄   



 

 

  
   

  

  

Therefore,             
 

 
  

  

        
 

 (ν)dν=    
   

     
  

which is called Rayleigh-Jeans law. 

In high frequency lim(ν     

i.e , , ⁄ ⁄  
 
   

Therefore,          

      

    ⁄      
      , which is 

  

called Wein‟s radiation formula. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

PHOTOELECTRIC EFFECT 

The phenomenon of emission of electron from surface of certain 

substance when a light of suitable frequency or wavelength incident 

on it is called Photoelectric effect. 

Experimental Arrangement 

The experimental arrangement consists of the following parts. 
 

Experimental results are represented graphically as follows 
 



 

 

 
 

 

 

Laws of Photoelectric effect 

 It is an instantaneous process. 

 It is directly proportional to intensity of incident light. 

 Photocurrent is independent of frequency of incident light. 



 

 

 Stopping potential depends upon the frequency but independent 

of intensity. 

 The emission of electrons stops below certain minimum 

frequency called threshold frequency. 

 Saturation current is independent of frequency. 

Einstein‟s Theory of Photoelectric Effect 

According to Einstein, when light of frequency ν is incident on a 

metallic surface, each photon interacts with one electron and 

completely transfers its energy to the electron, this energy is utilized 

in two ways. 

i. A part of this energy is used to the free electron from the atom 

and away from the metal surface n overcoming the work 

function(W0). 

ii. The other part is used in giving K.E to the electron ( m ). 
  

Thus according to the law of conservation of energy, 

                
  

(1) 

of the frequency of the incident light is required to remove the 

electron, then 

 
using eqn (2) in eqn(1), we get 

         (2) 

 
 

  

  



 

 

 
 

 

 

(3) 

Calculation of stopping Potential     
 

To neutralize the K.E of the emitted electron, we have 

  
          

  

(4) 

Using eqn (4) in eqn(1), we get 

              

implies that               
 

(5) 
 
 

 

Calculation of threshold frequency 

We have 

 
 

 

We have 

  



 

 

  

 

 
(6) 

Substituting eqn(2) in eqn(6) we get. 

              
 

 

  

   
  

 ⁄  

 
 
 
 

     

 





Calculation of work function 

From the plot of we have slope of the done is      
  

 
 

if we 

multiply „e‟ with the intercept, we get 

     
        

 

i.e                                

Calculation of Planck Constant (h) 

If we multiply the slope of plot of stopping potential       with „e‟    we 

get „h‟ 

i.e                       

  
    

  
    

Q. Is wave nature of radiation successfully explains the Compton 

effect? Justify your answer. 

Ans. No 

Compton effect 

 0 
y  int ercept in 0 

h 

 



 

 

The phenomena in which a beam of high frequency radiation like x- 

ray &γ-ray is incident on a metallic block and undergoes scattering is 

called Compton effect. 

 The component whose wavelength is same as that of incident 

radiation is called unmodified line (Thomson component) 

 The component whose wavelength is greater than the incident 

wavelength is called modified line (Compton component) 

 The increase of wavelength in the Compton component is called 

Compton Shift (Δλ). 

 It depends on the angle of scattering (angle between the 

scattered & incident x-ray). 

 It is independent of the wavelength of the incident x-ray. 
 

 

*Wave nature of radiation is unable to explain Compton shift as the 

Compton shift depends on angle of scattering and wavelength of 

scattered x-ray is different from that of the incident x-rays. 

Comptons Explanation:- 



 

 

Let us consider a photon of energy hν collide with an electron which 

is at rest. Though the electron is closely bound with the nucleus, but a 

small fraction of energy is used to free the electron. During the 

collision the photon gives a fraction of energy to the free electron and 

the electron gain K.E and recoils at an angle ϕ to the incident photon 

direction after collision and the photon with decrease energy hν' will 

emerges at an angle θ to the initial direction after collision. 

Applying law of conservation of energy, we have 

                       (1) 

The relativistic variation of mass is given as 

       

√
 
⁄ 

(2) 

 

According to law of conservation of momentum, 
    
                        (3) 

  
 
 

 
(4) 

From equation (3) 

  



 

 

1 v
2

 

c2 

  

  

0 

0 0 0 

mvc                       

(5) 
 

 
 

and from equation (4) 

 
 

(6) 

Squaring and adding equation (5) and (6) we get 

                                            

=                                     

           

                             

                           
            (7) 

From eqn(1), we get 

                        

             (                          
  

) (8) 

Subtracting eqn(7) from eqn(8) 

                                                            
 
 
 
 
 

 
m

2
c

2 
2 2 2 2 2 4 

  0 c  v   2h  '(1 cos )  2h   ' m0c  m0 c 

 

 m
2
c

4 
 2h

2 '1cos   2h   'm c
2 
 m

2
c

4
 

 2h  'm c
2 
 2h

2 '1cos 



 

 

   c 1 cos 

c 

0   0.0242 A 

 
c 
 

c 
 

h 
1 cos 

  

 '  m0c  

  '  
h 
1 cos 

m0c  

 

Where    ' 

=Compton shift 
 

  
h 

=Compton wavelength 
m0c  

 



6.6210

34 
JS 

9.1110
31 

kg  310
8  m

s 
 2.42610

12 
m 

 

c  has dimension of length 

 The Compton wavelength for any other particles is h 
mc 

 When   0,  There is no scattering or Compton shift 
 

along the incident direction. 

 



   ,   2c (Maximum shift) 

Pair Production: 

The phenomenon in which some γ-rays are converted into electron- 

positron  pair on passing near an atomic nucleus is called Pair 

production. 


2,   c 

  0 

c 



 

 

e 

 
 

 
 

 It is an example of conservation of energy and momentum in the 

nature. 

 Pair production is not possible if the γ-rays are treated as EM 

waves for which the pair production is not possible in vacuum. 

 For pair production the suitable condition is h  2m c2 . 
 

 The minimum frequency of γ-rays for which h  2m c2 and the 
0 0 e 

 

pair production takes place is called threshold frequency. 

 Pair production takes place for high frequency EM wave. (γ-ray) 

Compton effect takes place for intermediate frequency value. (x- 

ray) 

Photoelectric effect takes place for frequency corresponding to 

UV-waves. 

Matter waves and De-Broglie Hypothesis 

The waves associated with all material particles are called Matter 

waves. 



 

 

2 

According to De-Broglie hypothesis, the wavelength λ of 

matter wave associated with a moving particle of linear momentum P 

is given by 
 

 
h 

P 

 

or, 

 
For a non-relativistic free particle of kinetic energy E, we have 

P2 

E 
2m 

 

 

 
If q=charge of a particle 

m=mass of the particle 

V=potential difference 

 P 

 

2mE 

h 

2mE 

Then, P
2

 

2m 
 qv  P 






If T=absolute temperature, then 

 

P    
 

3 

2m 2 
kT  P 



3mkT 

 

  
h 

3mkT 
 

For a free relativistic particle, 

2mqv 

 
h 

mv 

 

 
h 

2mqv 

 



 

 

P 

E 


 P 
c 





 Experimental confirmation of matter wave was demonstrated by 

Davision-Germer experiment. 

 The wave nature of electron was demonstrated by division and 

Germer. 

Heisenberg‟s Uncertainty Principle: 

It states that it is impossible to measure simultaneously the position 

and the corresponding component of its linear momentum with 

unlimited accuracy. 

If Δx= uncertainty in x-component of the position of a particle 

Δpx= uncertainty in x-component of its linear momentum 

then, x 

 

Similarly for y and z-component 
 

y py   , z 
2 

 

Again uncertainty in energy and time is given by 

 
t 

 
Application of the uncertainty principle; 

i. Ground state energy of harmonic oscillator 

The energy of the 1-D harmonic oscillator is given as 
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Let us assume that in the ground state, the linear momentum P and 

position x of the oscillator are of the order of their uncertainties. 

i. e P P andx x 

According to principle 
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Using eqn(2) in eqn(1),we get 
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Since the energy E of the oscillator is minimum in the ground state, so 
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Where x0 corresponds to the ground state. 
 

Using eqn (4) in eqn (3), we get 
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Thus the minimum energy of 1-D harmonic oscillator cannot be zero. 

ii. Non-existence of electron in the nucleus 
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Let us assume that the electron is inside the nucleus whose 

uncertainty in position is given as 

 

From the principle 
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The minimum energy of the electron in the nucleus is 
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As energy of the electrons emitted in β-decay process is much less 

than this estimated value, so the electrons cannot be a part of the 

nucleus. 

iii. Ground State energy of the H-Atom 

The energy of the H-atom is given as 
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Let r  Uncertainty in position of the electron in the orbit of radius r 

in the ground state. 

p  Uncertainty in momentum of the electron in the ground state. 

Then using principle, 
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Now using eqn (2) in eqn (1), we get 
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As the ground state energy E0 is minimum, so 
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Examples: 

1) Heisenberg‟s gamma-rays Microscope: 

If Δx be the uncertainty in position of the electron decided by 

Resolving power of the microscope, then 

x  R.P  
1.22


2sin



4  2 

0 



 

 

As the scattered γ-ray photon enter the objective of the microscope, so 

its linear momentum can be resolved into component along its x-axis 

which is given as, 
 

px 
 

2h 
sin


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According to principle, 
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
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1.22 
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2h 
sin  1.22h 

2sin 



Which agrees with the uncertainty relation. 

2) Electron Diffraction: 

Let a be the width of the slit through which the electron beam is 

diffracted along y-direction. Then diffraction condition is, 

a sin   (1) 
 

 
 

 

Let p be the uncertainty in momentum along y-direction, then 
 

py  2 p sin

Now multiplying eqn(1) and eqn(2), we get 

y.py  a 2 p sin   2 p a sin 

(2) 

x.px  h 



 

 

 2 p  2 p. 
h 
 2h 
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


which satisfies the uncertainty principle. 

Transition from deterministic to probabilistic 

In classical physics, the physical properties of a system can be 

specified exactly in principle. If the initial conditions of a system are 

known, its subsequent configurations can be determined by using the 

relevant laws of physics applicable to the system. Thus classical 

physics is deterministic in nature. But this deterministic description is 

inconsistent with observation. In quantum mechanics every physical 

system is characterized by a wave function which contains all the 

information‟s for the probabilistic description of a system. This 

probabilistic description is the basic characteristic of quantum physics 

and is achieved by the wave function. 

Wave function 

 The state function which contains all information‟s about a 

physical system is called wave function  r, t . 

 It describes all information‟s like amplitude, frequency, 

wavelength etc. 

 It is not a directly measurable quantity. 

 It is a mathematical entity by which the observable physical 

properties of a system can be determined. 

Characteristics 

 It is a function of both space and time co-ordinate. 

i.e. r,t    x, y, z;t 

 It is a complex function having both real and imaginary part. 

 It is a single valued function of its arguments. 

y.py 
 

2 

 



 

 

 The wave function  and its first derivative 
x 

all places including boundaries. 

 It is a square integrable function i.e.  
2 
dv  1. 

are continuous at 

 The quantity  
2 represents the probability density. 

 It satisfies the Schrodinger‟s equation. 

Superposition principle 

This principle states that “Any well behaved state of a system can be 

expressed as a linear superposition of different possible allowed states 

in which the system can exists.” 
 

If 1, 2 , 3...... be the wave functions representing the allowed states, 

then the state of the system can be expressed as 

 1  2   3    ....  n   cn n 

Probability density 

The probability per unit volume of a system being in the state  is 

called probability density. 

i.e.    
2

 

 

As the probability density is proportional to square of the wave 

function, so the wavefunction is called “probability amplitude”. 

The total probability is, 

 dv    
2

dv  1 
v v 

 

As the total probability is a dimensional quantity, so it has dimension 
L3  and the wavefunction has dimension  3

2  .
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 Dimension of 1-D wave function is 

L 

 
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 
 Dimension of 2-D wave function is L-1  . 

 

Observables 

The physical properties associated with the wave function provides 

the complete description of the system state or configuration are 

called observables. 

Ex: energy, angular momentum, position etc. 

Operators 

The tools used for obtaining new function from a given function are 

called operators. 
 

If  Â  be  an  operator  and  f(x)  be  a  function,  then Â f(x)=g(x) ;  g(x)=new 

function 
 

Ex: energy operator, momentum operator, velocity operator etc. 

Physical Quantity Operator 

Energy-E i 



t 
 

Momentum- p i 
 

Potential Energy(V) V 
 

Kinetic Energy( p
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)  
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
2

 

2m 2m 

Eigen States: 
 

The number of definite allowed states for the system are called 

eigen states. 

 

 
Eigen Values: 





 

 

Â i   i i 

The set of allowed values of a physical quantity for a given 

system is called eigen 

values of the 
 

quantity. 

For any operator 

 
 

Â having eigen values 

 

i corresponding to the eigen 

 

equation is 

Expectation Values: 

states  i the eigen value 

 

The expectation values of a variable is the weighted average of the 

eigen values with their 

relative 
 

probabilities. 
 

If q1, q2 , q3 ,...... are the eigen values of a physical quantity Q and they 

occur with probabilities 
 

p1, p2 , p3 ,.... for a given state of the system then weighted average of Q 

is 
 

Q     
p1q1   p2q2  

 pnqn 

p1  p2  ....  pn 

 

Since the total probability is 1, so  p1   p2   p3  1 
 

  Q   p1q1   p2q2   pnqn 

 

In general if A be a physical quantity, then 
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For normalized wave function. 

 For any function to be normalized is given as 
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 The expectation value of energy, 
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Schrodinger‟s Equation:- 

The partial differential equation of a wave function involving the 

derivatives of space and time coordinates is called Schrodinger equation. 

Time-dependent Schrodinger equation 

Let the wave function be represented by 

  x,t   Ae
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The energy and momentum are given as 
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Using eqn(1) in eqn(2), 
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This is the time-dependent Schrodinger equation for a free particle in 1- 

dimension. 

If the particle is in a potential V(x), then 
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Similarly along Y and Z-axis is given as 
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Time-dependent Schrodinger equation in 3-D: 
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Time-independent Schrodinger equation: 

If the energy of the system does not change with time then 
 

 

Now from eqn 
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This is time-independent Schrodinger equation in 3-D. 

Potential step: 

The physical situation in which the potential energy of a particle 

changes from one constant value (V1) to another constant value (V2) 

when the particle changes from one region to another is called potential 

step. 
 

 
The potential step can be given as 

 

V (x)  0, x  0 

 
 V0 , x  0 

Let us consider the particle incident on the potential step from left to 

right. According to the classical physics if the particle has energy less 

than the potential step, the particle cannot move beyond x=0 and will 

rebound into region-1. If the energy of the particle is greater than the 

height of the potential step the particle will go to the region-2. 

Case-1:(E>V0) 

E V   0 
2m 

2 

2   



 

 

2 

d  2m 

k 

k 

1 

2 2 

1 

2 

ref 

2 

1 1 

2 2 

Let 1 and  2 be the wave function in region-1 and region-2 then time 

dependent Schrodinger equation is given as 
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Where k  
2mE 
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The general solution of eqn(3) and eqn(4) is given as 

  (x)  Ae
ik1x  

 Be
ik1x (7) 
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ik2 x  

 De
ik2 x (8) 
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zero. 

Ae
ikx -incident wave= 

Be
ikx -reflected wave= 

Ce
ik2 x -transmitted wave=

De
ik2 x  -wave incident from right to left in region-2 for which it is 

 

Thuseqn (8) becomes 
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Using boundary condition, 

 x  x 
x0 x0 

 
 2 

x0 x  x0 

 

We have A+B=C and 

 B  
k1  k2 A 

k1  k2 

ik1(A  B)  ik2e 

(10) 

Thus it is observed that 

1. R+T=1, which follows from the conservation of flux. 

2. It explains wave nature of particles by the fact that the 

probability of particle is not zero in the region-2 which 

iscontradictory to classical physics. 

3. If barrier height V0<E(incident energy) then incident particle do 

not see the potential step and are almost transmitted as per the 

classical physics. 

4. If V0 , then the quantum effect become prominent and the 

reflection is appreciable. 

Case-2: (E<V0) 

Now the Schrodinger equation in region-2 is given as 
d 
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Thus the solution of the equation is given as 
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Reflection Coefficient 

It is defined as the ratio of reflected flux to incident flux of the particle. 
 

i.e R 


  


V1 





2 

inc 

,V1  
m 

 
k   k  

2

 

 
ref ref   

  1 2 
      A 

2 

k   k  
2

 
inc    inc 1 2 

 
 

R 
 E  E V  

2

 
0    

2
 

 E  E V0 

Transmission Coefficient:- 

It is defined as the ratio between transmitted flux to incident flux. 

i.e    
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As x  ,  0  De
x 
  ,for which D=0 

 

So   x  Ce
 x

 (2) 
 

Which indicates that the probability of finding of particle in region-2 is 

not zero which is classically forbidden as there is some particles on 

region-2 according to quantum mechanics. 

Potential barrier:- 

The physical situation in which the potential of a region varies between 

zero and maximum outside and inside the confined region is known as 

potential barrier. 

The potential of such region is given by, V(x) =0, x<0 and x>a 

=V0, 0≤x≤a 
 

 
 

Let us consider a particle is travelling from left to right. As per the 

classical physics the particle cannot cross the barrier if E<V0 but 

according to quantum mechanics there is non-zero probability of the 

particle of crossing the barrier even if E<V0. 

Case-1(E<V0) 

Let1 be  the  wave  function  of  the  particle  describes  the  motion  of  the 

particles in the region-1, then 
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In region-2, Schrodinger wave equation is given as 
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The general solution of Schrodinger equation in the three region is given 

by 

  x  Ae
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 Be
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Where Ae
ikx , Beikx → the incident and reflected waves in region-1 

Fe
ikx → Transmitted wave in region-2 
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The wave function 1 and 2 and their derivatives continuous at x=0. 

Similarly  2 and  3 and their derivatives should be continuous at x=a. But 

in the region-2 the wave function is non-zero. Thus at the boundary x=a, 

continuity wave function  2  3 requires that  3 is non-zero at region-3. 

Thus there is non-zero probability of finding the particles in region-3 

even if the incident particle energy is less than the barrier height. 

Quantum mechanical tunneling: 

The phenomena in which the particles penetrate through the barrier is 

called quantum mechanical tunneling. 

Ex: Emission of α-particle, nuclear fission, tunnel diode, Josephson 

junction, scanning tunneling microscope. 

The transmission probability increases with decrease in height V0 and 

width „a‟ of the barrier. The transmission co-efficient is given as 
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According to quantum mechanics if E>V0, all particles should be 

transmitted to the region-3 without any reflection but it is not possible 

for all the values of incident energy. 

The transmission coefficient is one, for these values for which 
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Particle in a one dimensional box: 

The physical situation in which the potential between the boundary wall 

is zero and is infinite at the rigid walls is called one dimensional box or 

one dimensional infinite potential well. 

The potential function for the situation is given as 
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Now Schrodinger equation inside the well is given as 

d 
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The general solution of eqn(1) is given as 
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 Asin kx  B cos kx 
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Where A and B are to be determined from the boundary condition at x=0 

and x=a. 

Thus eqn(2) becomes, 0  Asin kx  B cos kx  0  B 

 





Thus the wave function inside the well is given as 
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
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Energy eigen Values:- 

From eqn(3), 
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Thus allowed bound states are possible for those energies for which the 

width of the potential well is equal to integral multiple of half wave 

length. 
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Thus the energy of the particle in the infinite well is quantized. 
 

 The ground state energy is E1 
2 2 

2ma
2

 

which is the minimum energy 

of the particle and is called the zero point energy. 

 The energy of the higher allowed levels are multiple of E1 and 

proportional to square of natural numbers. 

 The energy levels are not equispaced. 

Eigen Functions 
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The eigen functions of the allowed states can be obtained as 
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Thus the eigen function for each quantum state are obtained by 
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